ey e T
v e B A BN N I A R




.‘.' .

Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 5395-5400, May 1996
Biochemistry

—

Extremely sensitive, background-free gene detectlon using binary

probes and Qp replicase

(diagnostic clinical assays/isolation of probe-target hybrids /T4 DNA ligase/target-dependent signal generation/exponential

amplification of reporter RNAs)

SaNnJAY Tyacr*, ULF LANDEGRENT, MOUNSSEF TAzZI*, PauL M. Lizarpi¥, AND FRED RUSSELL KRAMER*

*Department of Molecular Genetics, Public Health Research Institute, New York, NY 10016; fDepartment of Medical Genetics, Uppsala University, 5-751 23
Uppsala, Sweden; and IDepartment of Molecular Recognition and Structural Biology, Instituto de Biotecnologfa, Universidad Nacional Auténoma de México,

Cuernavaca 62270, México

Communicated by Leshe E: Orgel, The Salk Institute for Biological Studies, La Jolla, CA, January 19, 1996 (received for review October 12, 1995)

ABSTRACT
nucleic acid amphflcatlon assay that is suitable for routine
gene detection. The assay is based on a novel molecular genetic
strategy in which two different RNA probes are hybridized to
adjacent positions on a target nucleic acid and then ligated to
form an amplifiable reporter RNA. The reporter RNA is then
replicated up to a hundred billion-fold in a 30-min isothermal
reaction that signals the presence of the target. The assay can
detect fewer than 100 nucleic acid molecules; it provides
quantitative results over a wide range of target concentrations
£-and it employs a universal format that can detect any infec-
ous agent.

xtremely specific and sensitive assays are needed for the
outine detection of rare pathogenic agents in clinical samples.
; The most specific assays employ single-stranded oligonucleo-
de probes to seek out and bind to unique regions of a
athogen’s nucleic acid. The resulting probe—target hybrids are
he most specific and stable intermolecular complexes known.
#¥When a high concentration of probes is incubated with a
- ~ sample, virtually every target molecule forms a hybrld One
* need only remove the probes that are not hybridized and then
.tount the remaining hybridized probes to determine the
i s dlegree of infection. However, the number of target molecules
#=4n a sample is often so low that classical detection schemes,
“=§uch as labeling the probes with radioactive atoms or fluores-
ent moieties, are not sufficiently sensitive. Thus it is necessary
o design assays in which alarge number of reporter molecules
re generated for every target that is present.

Although a very large number of copies are synthesized in
target-sequence amplification assays (1-5), such as those that
use the polymerase chain reaction, their design creates prac-
tical problems that restrict their use to specialized laboratories.
These assays are usually carried out in crude cellular extracts,
where they can be inhibited by cellular components and where
the presence of unrelated nucleic acids can lead to false-
positive signals; different sample preparation protocols are
needed for different tissues and for different infectious agents;
relatively expensive equipment is often required to alternately
raise and lower the temperature; and additional steps are
needed to detect the amplified nucleic acid, increasing the risk
of contaminating other samples. Although there are a variety
of solutions for each of these problems, the resulting assays are
complex and difficult to quantitate.

We have been working on an alternative amplification
scheme that avoids these problems. In our approach, the
probes, rather than the targets, are amplified exponentially
(6-8). Unlike target amplification schemes, where repeated
cycles of hybridization and polymerization are carried out in
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We have developed a specific and sensitive -

the same solution, our assays employ a single hybridization step

" that is carried out under universal and highly stringent con-

ditions. The probe-target hybrids are then isolated and the
bound probes are amplified exponentially in a brief isothermal
reaction. Our probes are recombinant RNAs (9), in which a
probe sequence is embedded at an appropriate site within the
sequence of MDV-1 RNA (10, 11), which is a naturally
occurring template for the RNA replicase of bacteriophage
QB. These recombinant RNAs hybridize to their targets as do
ordinary probes, but unlike ordinary probes, more than a

“billion copies of each probe can be synthesized in a 30-min

incubation with Qp replicase (12). This amplification does not
require primers, and strand separation occurs naturally at 37°C
(13, 14). The large number of RNA molecules that are
synthesized signals the presence of the target nucleic acid.

" Because a single probe molecule can initiate exponential

amplification (15), these assays can be extremely sensitive. In
practice, however, their sensitivity has been limited by how well
the probe-target hybrids can be separated from the large
number of nonhybridized probes that are present to ensure

.that hybridization occurs rapidly. Despite the use of reversible

target capture (16), which is an extremely efficient hybrid
isolation procedure, we found that 10,000 nonhybridized
probes could not be removed, generating a background signal
that obscured the presence of rare targets (8).

In this report, we describe a new strategy that solves the
probiem posed by the persistence of nonhybridized amplifiable

‘probes. The probe molecules were redesigned so that they

cannot be amplified unless they hybridize to their target. We

. divided the recombinant-RNA probes into two separate mol-

ecules, neither of which can be amplified by itself, because
neither contains all the elements of sequence and structure
that ‘are required for replication. The division site is located in
the middle of the embedded probe sequence. When these

"“binary probes” are hybridized to adjacent positions on their

payment. This article must therefore be hereby marked “advertisement” in

accordance with 18 U.S.C. §1734 solely to indicate this fact.
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target, they can be joined to each other by incubation with an
appropriate ligase, generating an amplifiable reporter RNA.
Nonhybridized probes, on the other hand, because they are not
aligned on a target, have a very low probability of being ligated.
By combining this target-dependent ligation step with a new
and simpler hybrid-isolation step, signal generation is strictly
dependent on the presence of target molecules, no background
signals are generated, and the resulting assays are extraordi-
narily sensitive.

MATERIJALS AND METHODS

Synthetic Target Molecules. A cDNA encoding a portion of
the polymerase gene of human immunodeficiency virus type 1
(HIV-1) strain NL4-3 (17) was subcloned between the HindIII
and Xmal restriction sites in the polylinker of plasmid
pGEM-4Z (Promega). The resulting plasmid was linearized by

_digestion with endonuclease Smal and transcribed by incuba-
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tion with bacteriophage T7 RNA polymerase. The 875-nt tran-
scripts contained nucleotides 4229-5091 of the HIV-1 (NL4-3)
genome (listed in the GenBank data base as HIVNLA3).

. Binary Probes. Both the left and the right probe were
prepared by transcription from DNA templates. The first 63 nt
at the 5" end of the left probe (shown in Fig. 1) were identical
to the 5'-terminal sequence of MDV-1 (+) RNA; the next 6 nt
served as a spacer (which, is not essential); and the last 23 nt
were complementary to nucleotides 4596-4618 of HIV-1
(NL4-3) RNA. The 3' ends of the left probe transcripts
naturally terminate in the hydroxyl group required for ligation.
The first 19 nt at the 5’ end of the right probe (also shown in
Fig. 1) were complementary to nucleotides 4577-4595 of
HIV-1 (NL4-3) RNA, the next 10 nt served as a spacer (also
nonessential); and the last 156 nt were identical to the 3'-
terminal sequence of MDV-1 (+) RNA. Normalily, the 5’ ends
of the right probe transcripts would have contained a triphos-
phate group, which cannot participate in ligation; however, in
addition to providing guanosine triphosphate as a precursor
for transcription, we also provided a 20-fold excess of
guanosine monophosphate, which is incorporated into the
5'-terminal position, assuring that almost all of the right probe
transcripts contained the monophosphate group required for
ligation. Many of the left probe transcripts possessed addi-
tional (nontemplated) nucleotides at their 3’ end. Electro-

.phoretic isolation of correct-length left probe transcripts,
&xthough not done for the experiments reported here, improves
igation efficiency from 8% to 40%.

;735 The DNAs used as templates for the synthesis of these
bl probes were prepared in polymerase chain reactions initiated
twith plasmid, pT7MDV (18), which contains a cDNA copy of
he MDV-1 sequence. The primers used in these reactions
aﬁpossessad sequences at their 5' ends that added a T7 RNA
__:;;'%olymerase promoter and a probe sequence to the amplified
&DNA. The first primer for the left probe template contained
£7the promoter sequence and the other primer contained a
, portion of the target sequence, while the first primer for the
s=fight probe template contained the promoter sequence di-
tected toward the complement of the remainder of the target

%o, Target RNA

%,

GUCCGCCGG‘AUUGA&AUC U-G-A-C-C-AL U
QCAGOCGBCCUUAACUGUAGUA'C‘ G-a-u,

SN ) [

-
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sequence and the other primer was complementary to the 3’
end of the MDV-1 (+) sequence.

Capture Probes. These single-stranded oligodeoxynucleoti-
des are complementary to the target (19} and possess a biotin
moiety at their 5' end that enables them to bind strongly to
streptavidin (20), which is covalently linked to the surface of
paramagnetic particles (21). The use of two different capture
probes improves the efficiency of target capture by 60%. These
oligonucleotides were prepared commercially (Operon Tech-
nologies, Alameda, CA) by chemical synthesis and contained
4 nt at their 5’ end that served as a spacer between the probe
sequence and the 5'-terminal biotin moiety. The sequence of
one capture probe was 5'-biotin-TACGATGTCTGTTGC-
TATTATGTCTACTATTCTTTCCCCTGCACTGTAC-3',
which is complementary to nucleotides 4808-4852 of HIV-1
(NL4-3) RNA; and the sequence of the other capture probe
was 5'-biotin-TACGACTGCTACCAAGATAACTTTTC.
CTTCTAAATGTGTACAATCTAGC-3', which is comple-
mentary to nucleotides 4415-4459 of HIV-1 (NL4-3) RNA.

HIV-1 Infected Lymphocytes. A suspension of H9 cells (22)
was infected with HIV-1 isolate HTLV-IIImn (23). Histolog-
ical staining with serum from an HIV-positive individual, 24 hr
after infection, indicated that more than 99% of the cells were
infected. Stock samples were prepared by serially diluting the
HIV-1-infected H9 cells with uninfected H9 cells. Each stock
sample contained 600,000 cells. The cells were then washed
and concentrated by centrifugation, dissolved in 240 ul of 5 M
guanidine thiocyanate, and incubated at 37°C for 60 min.
Concentrated solutions of this chaotropic salt lyse cells, inac-
tivate enzymes, liberate nucleic acids from cellular matrices,
unwind DNA molecules, and relax RNA secondary structures
(24). Each lysate was mixed thoroughly and one sixth of its
volume was assayed.

Assay Protocol. Some 10'® molecules of each binary probe
and 10! molecules of each capture probe were added to each
sample. Hybrids were formed by incubation at 37°C for 60 min
in 100 ul of buffer A [2 M guanidine thiocyanate (Fluka)/400
mM Tris-HCl, pH 7.5/5 mg of sodium N-lauroylsarcosine per
ml/5 mg of bovine serum albumin fraction V per ml (Boehr-
inger Mannheim)/and 80 mM EDTA] in polypropylene titer-
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FiG. 1. Binary probes bound to a complementary HIV-1 target molecule. Neither the left probe nor the right probe can be amplified by
incubation with QP replicase. However, if the binary probes are hybridized to adjacent positions on a target RNA (as shown), they can be ligated
to each other to form a reporter RNA that can be amplified exponentially by QB replicase. The magnified view shows the phosphodiester bonds
(short lines). An arrow points to the location where a phosphodiester bond will be formed when the hybrid is incubated with T4 DNA ligase. Ligated
probes form a naturally occurring QB replicase template, MDV-1 RNA, containing an embedded HIV-1 probe sequence.
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tubes (Bio-Rad). The presence of 2 M guanidine thiocyanate
in the hybridization mixture promotes the formation of hybrids
without interference from denatured cellular debris (25). The
hybrids were then captured by adding 20 ul of a suspension of
streptavidin-coated paramagnetic particles, as supplied by the
manufacturer (Promega), 'and incubating at 37°C for 10 min.
We discovered that the presence of 2 M guanidine thiocyanate
does not prevent the biotinylated capture probes from binding
to streptavidin. The particles were then washed four times with
200 pd of buffer A at 37°C to remove excess probes and cellular
material, and washed an additional four times at 37°C with 200
wl of buffer B [S mM MgCl,/66 mM Tris-HCl, pH 7.5/1 mM
ATP/0.5 mg of Nonidet P-40 per ml (Sigma)/1 mM dithio-
threitol] to remove the guanidine thiocyanate. During each
wash cycle, the suspended particles were agitated vigorously on
a multitube vortex-type mixer (American Hospital Supply,
McGaw Park, IL); they were then drawn to the walls of the
titertube with the aid of a magnetic separation device (Vysis,
Downers Grove, IL); and the wash solution was withdrawn by
aspiration and replaced with a new solution. After the last

wash, the particles were, suspended in 50 ul of buffer B

containing 1 unit of Escherichia coli ribonuclease H (Pharma-
cia) and incubated at 37°C for 10 min to release the hybrids.
The particles were then magnetically drawn to the sides of the
titertube and the supernatant containing the hybrids (=45 ul)

was transferred to a new titertube. Ligation was carried out by -

sadding 5 pl of buffer B containing 25 units of bacteriophage
T4 DNA ligase (Boehringer Mannheim) and incubating at

ially amplified by adding 100 ul of buffer C (15 mM MgCl,/45

;. mM Tris-HCI, pH 8/100 uM ATP/600 pM [a-*2P]CTP/600
:" "HM GTP/and 600 uM UTP) containing 6 ug of Qp replicase
&h(Vysis) and incubating at 37°C for 31 min, Samples (5 ul) of
1bach amplification reaction were withdrawn every minute
F~(beginning at 8 min) and were added to 100 ul of a stop
: 'solutlon containing 20 mM EDTA (pH 8) and 120 mM NaCl.

a' a solution containing 360 mM phosphoric acid, 20 mM sodium
spyrophosphate, and 2mM EDTA. The precipitated RNA was
=bound to a Zeta-Probe nylon membrane (Bio-Rad) on a

L2 4lot-blot vacuum filtration manifold (Bio—Rad). The mem-
£ prane was then washed with 500 ml of the precipitation
olution to remove unincorporated [**PJCTP. Finally, the
**membrane was air-dried and the [32PJRNA present in each
ample was visualized by autoradiography.

RESULTS

Design of the Assay. Our previous probe-amplification
assays used recombinant RNAs that consisted of a probe
sequence embedded within a template for Qf replicase (8). To
obtain hybridization probes that cannot be exponentially am-
plified, we divided the recombinant RNA probes into two
separate molecules. The division site was located approxi-
mately in the middle of the embedded probe sequence (Fig. 1).
To be replicated exponentially, an RNA must possess an
internal replicase binding site (26), a particular 3'-terminal
sequence for the initiation of replication (27), and a particular
5'-terminal sequence that encodes the 3’-terminal initiation
sequence needed for the replication of the complementary
strand (28). Neither fragment of the recombinant RNA probe
possessed all of these sequences, and preliminary experiments
confirmed that neither fragment could be replicated exponen-
tially. However, each fragment retained the ability to hybridize
to the target. When these binary probes are hybridized to a
target strand, the partial probe sequence at the 3’ end of one
molecule is brought immediately adjacent to the partial probe
sequence at the 5' end of the other molecule. Incubation of the
hybrid with a target-dependent ligase covalently links the two
probes, generating an amplifiable reporter RNA. Although

%37°C for 60 min. The resulting reporter RNAs were exponen- -
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other researchers obtained contrary results (29-31), we found
that RNA fragments hybridized to an RNA target can be
ligated efficiently by incubation with T4 DNA ligase. Conse-
quently, we were able to design an assay in which nonampli-
fiable RNA fragments are used as probes and the generation
of exponentially amplifiable reporter RNAs is strictly depen- -
dent on the presence of target strands.

The assay is shown schematically in Fig. 2. The sample is first
dissolved in a guanidine thiocyanate solution. Binary probes
and biotinylated DNA capture probes are added, and the

Tatgel
Hybridize
/.‘ KCapture Probe
Binary Probes Biotin
Capture
and Wash
Surface of a Streptavidin-coated
l Paramagnetic Particle
RNase H RNase H
Release = %/““ ““‘\6(_’
Separate

Eany

l Ligase
Ligate Wﬂ
Reporter RNA

| OB Replicase
A
¥ Y e ey %
!

ST TS Y %
SN e Y %
!

Amplify

FiG.2. Schematic representation of the key physical and enzymatic
steps used in the assay. Both the target and the binary probes are RNA
molecules. The capture probes are DNA molecules. Two different
capture probes are used to increase the efficiency of capture. They
hybridize to the target RNA on opposite sides of the sequence to which
the binary probes are bound. Incubation with ribonuclease H digests
the target RNA where it is bound to each capture probe, selectively
releasing the binary probe-target hybrid from the surface of the
paramagnetic particle, After removal of the particle with a magnet, the
isolated hybrid is incubated with T4 DNA ligase (which serves here as
an RNA-dependent RNA ligase), resulting in the formation of a
reporter RNA that is then amplified exponentially by incubation with
QB replicase.
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mixture is incubated to form hybrids, which are then collected
on the surface of streptavidin-coated paramagnetic particles.
The particles are washed to remove excess probes and cellular
material. Despite vigorous washing, some probes remain
bound in a nonspecific manner to the walls of the assay tube,
to the surface of the particles, and to the capture probes (32).
Since nonhybridized binary probes can be ligated through
chance alignment, it is necessary to further reduce their
concentration. Therefore, the hybrids are separated from the
nonspecifically bound probes by incubating the particles with
ribonuclease H, which cleaves the target RNA where it is
bound to the DNA capture probes, selectively releasing the
probe-target hybrids into solution. The particles are then
magnetically drawn aside and the supernatant containing the
hybrids is transferred to a new tube. The isolated hybrids are
then incubated with T4 DNA ligase to covalently link the
binary probes, forming amplifiable reporter RNAs. When Qf
replicase is added, the only RNA that is synthesized is derived
from binary probes that were hybridized to target strands.

In this assay format, hybridization precedes amplification.
This is fundamentally different from the format used in
target-sequence amplification assays, where repeated cycles of
hybridization and amplification are carried out in the same
solution. Because the nonenzymatic steps in our assay (sample
preparation, hybridization, capture, and washing) are carried
out in the presence of guanidine thiocyanate, which is an

Fextremely effective denaturant, the same protocol can be used

for all samples, irrespective of the type of tissue being tested
or the nature of the suspected infectious agent. Furthermore,
the enzymatic steps (hybrid release, ligation, and amplifica-
‘ tlon) are deferred until the hybrids have been isolated and
: ‘placed in a defined environment; thus they cannot be inhibited
by cellular components, and false-positive signals cannot arise
Hrom the presence of irrelevant nucleic acids.

£ Assay with Simulated HIV-1 mRNA Targets. To determine
the sensitivity of the assay, eight samples were prepared, each
containing a different number of transcripts of the HIV-1
s integrase gene. We used binary probes (shown in Fig. 1) that
##were complementary to a conserved sequence within the

o0 sequences on either side of the target sequence. Probe-
arget hybrids were formed bound to the surface of paramag-
qetic particles, washed vrgorously, and released into solution
y digestion with ribonuclease H. The isolated hybrids were
ncubated with T4 DNA ligase and then incubated with

RNA in each allquot was bound to a nylon membrane and
visualized by autoradiography. The results are shown in Fig. 3.
Reporter RNA was synthesized in the amplification reactions
from samples that contained 107, 105, 10°, 104, 10% and 10°

HIV-1 target molecules.: However, no reporter RNA was

10,000,000
1,000,000
100,000
10,000
1,000

100

10

Number of
HIV-1 RNA
Molecules

ntegrase gene and capture probes that were complementary
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synthesized in the amplification reaction from the sample that
contained 10 target molecules, nor was any RNA synthesized
in the amplification reaction from the sample that contained
no target molecules, even after 31 min of incubation. These
results demonstrate that the sensitivity of the assay lies be-
tween 10 and 100 target molecules.

Because there is no background reaction, the sensitivity of
the assay is not limited by the occurrence of obscuring signals.
Instead, it is determined by the efficiency of the individual
steps required to generate a reporter RNA. In experiments
that followed the fate of labeled target strands and labeled
probes through the various steps of the assay, we measured the
number of hybrids that survived each step and found the
following efficiencies: hybridization and capture, 95%; wash-
ing, 56%; hybrid release, 60%; and ligation, 8%—resulting in
an overall efficiency of 2.6%. Thus, for every 100 target
molecules in a sample, two or three reporter RNAs were
formed, and they were exponentially amplified by QB replicase
to generate a detectable signal. Samples containing less than
40 target molecules were unlikely to generate even a single
molecule of amplifiable RNA.

Assay with HIV-1 Infected Human Lymphocytes. To dem-
onstrate the specificity of the assay and to confirm that the
presence of cellular material in the sample does not compro-
mise. sensitivity, seven samples were prepared by mixing HIV-
1-infected lymphocytes with uninfected lymphocytes. Al-
though each sample contained a different number of infected
cells, the total number of cells in each was 100,000. A mock
sample was also prepared by adding 105 HIV-1 transcripts to
a lysate from 100,000 uninfected cells. The same protocol and
probes were used as in the assays with HI'V-1 transcripts. The
results are shown in Fig. 4. Every sample that contained
infected cells gave a clear signal, including the sample that
contained only a single infected cell in the presence of 100,000
uninfected cells; yet the sample that did not contain any
infected cells gave no signal, despite the presence of cellular
components and nucleic acids from 100,000 uninfected cells.
These results demonstrate that the assay is highly specific for
the presence of target nucleic acid.

The results also illustrate how kinetic data can be used to
determine the number of target molecules in an unknown
sample. Because the amount ‘'of reporter RNA doubles at
regular intervals, it takes longer for a given (arbitrary) amount
of RNA to be synthesized in a reaction initiated with less RNA.
We measured the amount of time it took for 100 ng of reporter
RNA (6.4 X 10'! molecules) to be synthesized in each of the
reactions shown in Fig. 4. This amount of RNA was just enough
to be visible in the autoradiogram. We then plotted these
“response times” against the number of infected cells in each
sample. The results (Fig. 5) demonstrate that response time is
inversely proportional to the logarlthm of the number of
targets. For every 10-fold decrease in the number of infected

Amplification Time (min)
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FiG.3. Demonstration that binary probe assays are background-free and sufficiently sensitive to detect 100 target molecules. Each amplification
reaction was sampled at 1-min intervals. The fewer the number of target molecules in the original sample, the longer it took before sufficient reporter
RNA was synthesized for it to be visible in the autoradiogram. Measurements of the amount of radioactive reporter RNA synthesized in the reaction
from the sample containing 100 molecules indicated that it was amplified a hundred billion-fold.
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Amplification Time (min) 5

FIG. 4. Demonstration that binary probe assays are highly specxflc Every sample that contained HIV-1-infected lymphocytes gave a positive
signal, including the sample that contained only one infected cell in 100,000 uninfected cells; yet the sample that contained only uninfected cells

gave no signal at all.

cells, it took about 2.1 min longer to synthesize 100 ng of
reporter RNA. This relationship holds over an extremely wide
range of target concentrations, extending from 1 cell to at least
100,000 cells. Thus, the number of infected cells in an unknown
sample can be determined by comparing its response time to’
the results obtained from a set of reference standards.

DISCUSSION

i ~Both of the enzymatic steps that occur before amplification are
_,‘necessary When the llgaton step is omitted, the number of
eporter RNAs generated is five orders of magmtude lower.

upf ligation is that Qp repllcase can occasionally continue

:, polymerization across the gap in the ligation junction. When
~the enzymatic hybrid 1solatxon step is omitted, the assays are

22 |~

Response Time (min)

1 10 100 1000 10000 100000

Number of HIV-infected Cells

FIG. 5. Linear relationship between response time and the loga-
rithm of the number of targéts in a sample. The response time was
measured for each amplification reaction shown in Fig. 4 and plotted
against the number of HIV-1-infected lymphocytes in the correspond-
ing sample. For every 10-fold decrease in the number of infected cells,
it tock about 2.1 min longer to synthesize 100 ng of reporter RNA. The
response time of the mock sample (indicated by an open circle)
corresponded to the response time that would have been obtained
from a sample containing 360.infected cells. Because the mock sample
contained 10® HIV-1 transcripts, we infer that each infected cell

contained ~2800 HIV-1 target molecules.

he only reason that any reporter RNAs occur in the absence .

no longer background-free because persistent nonhybridized
binary probes on the surface of the particles are occasionally
ligated to each other. However, target-independent ligation is
second order and depends on the concentration of the probes.
When the hybrids are isolated, the concentration of these
probes is reduced to such a low level that not even a single
reporter RNA is generated.

Several modifications will expand the utility of the assay.
Virtually the only nucleic acid that is present in the amplifi-
cation reactions is the reporter RNA. Therefore, the kinetic
course of the reactions can be followed in real-time by
including an intercalating fluorescent dye, such as propidium
iodide, in the reaction mixture and measuring the increase in
its fluorescence as it binds to the RNA being synthesized (33).
Because there is no need to isolate the amplified RNA to
detect it, the reaction tubes can be permanently sealed,
eliminating the risk of contaminating other samples.

Binary probes that are specific for different target RNAs can
be combined in a single assay tube, thus enabling the simul-
taneous detection of entire panels of pathogens. When these
assays give a positive signal, the responsible pathogen can be
identified because the amplified reporter RNA contains a
unique embedded probe sequence. We recently devised novel
nucleic acid detector probes, called “molecular beacons,” that
only fluoresce when they hybridize to their target (34). A series
of molecular beacons, each specific for a different embedded
probe sequence and each labeled with a fluorophore of a
different color, can be included in an amplification reaction,
enabling homogeneous, real-time detection in a multiplex
format.

Binary probe assays are particularly amenable to distin-
guishing genetic alleles. Efficient ligation only occurs when the
terminal nucleotides on either side of the ligation junction are
correctly base-paired to the target strand (35). The occurrence
of a terminal mismatch (due to an allelic difference) will result
in a marked reduction in the number of amplifiable reporter
RNAs. In these assays, the targets will be DNA, the ligation
reaction will utilize an RNA-DNA heteroduplex (36), and
selective hybrid release will be achieved by incubation with an
appropriate restriction endonuclease.

Finally, binary probe assays will require little in the way of
instrumentation. They can be carried out in a hermetically
sealed device containing two reaction chambers, where hy-
bridization, capture, washing, and hybrid release occur in one
chamber, and ligation, amplification and signal detection occur
in the other. Because these assays are simple in design and
practice, they can routinely be used for gene detection.

We dedicate this paper to the memory of Sol Spiegelman, who first
conceived quantitative nucleic acid hybridization assays (37, 38) and
who introduced an entire generation of molecular biologists to the

“exponential amplification of nucleic acids (39). We thank Claire

Grigaux for her expert technical assistance; David Ho, William
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Honnen, and Abraham Pinter for the preparation of HI'V-1-infected
lymphocytes; and Harvey Bialy, Herman Blok, Karl Drlica, and David
Yong Zhang for their incisive observations. This research was sup-
ported by the National Institutes of Health (Grants HL-43521 and
AI-37015) and the American Foundation for AIDS Research (Grant
02063-15-RGR). U.L. is supported by the Beuer Foundation, and

"P.M.L. is supported by an International Research Scholars Award
from the Howard Hughes Medical Institute.
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Review

Molecular diagnostics of infectious diseases

Y1-WEI TANG,” Gary W. Procor, and Davip H. PersinG*

U e the past several years, the development and appli-
cation of molecular diagnostic techniques has initiated a
revolution in the diagnosis and monitoring of infectious
discases. Microbial phenotypic characteristics, such as
protein, bacteriophage, and chromatographic profiles, as
well as biotyping and susceptibility testing, are used in
most routine laboratories for identification and differ-
e=*" - on. Nucleic acid techniques, such as plasmid
profinng, various methods for generaling restriction
fragment length polymeorphisms, and the polymerase
chain reaction (PCR), are making increasing inroads into
clinical laboratories. PCR-based systems to detect the
ctiologic agents of disease directly from clinical sam-
ples, without the need for culture, have been useful in
rapid detection of unculturable or fastidious microor-
gar<is. Additionally, sequence analysis of amplified
micrebial DNA allows for identification and betler
characterization of-the pathogen. Subspecies variation,
identified by various techniques, has been shown to be
important in the prognosis of certain diseases. Other
important advances include the determination of viral
load and the direct detection of genes or gene mutations
responsible for drug resistance. Increased use of auto-
2170 and user-friendly software makes these technol-
ogics nore widely available. In all, the detection of
infectious agents at the nucleic acid level represents a
true synthesis of clinical chemistry and clinical micro-
biology techniques. . -

Over the past century microbiologists have searched for
more rapid and efficient means of microbial identification.
The vientification and differentiation of microorganisms
hae prncipally relied on microbial morphology and
growth variables. Advances in molecular biology over the
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past 10 years have opened new avenues for microbial
identification and characterization {1-5].

The traditional methods of microbial identification rely
solely on the phenotypic characteristics of the organism.
Bacterial fermentation, fungal conidiogenesis, parasitic
morphology, and viral cytopathic effects are a few phe-
notypic characteristics commonly used. Some phenotypic
characteristics are sensitive enough for strain character-
ization; these include isoenzyme profiles, antibiotic sus-
ceptibility profiles, and chromatographic analysis of cel-
lular fatty acids’ [6-13]. However, most phenotypic
variables commonly observed in the microbiology labo-
ratory are not sensitive enough for strain differentiation.
When methods for microbial genome analysis became
available, a new frontier in microbial identification and
characterization was opened.

Early DNA hybridization studies were used to demon-
strate relatedness amongst bacteria. This understanding
of nucleic acid hybridization chemistry made possible
nucleic acid probe technology [14-25]. Advances in plas-
mid and bacteriophage recovery and analysis have made
possible plasmid profiling and bacteriophage typing, re-
spectively {26 -31]. Both have proven to be powerful tools
for the epidemiologist investigating the source and mode
of transmission of infectious diseases {26, 28, 30, 32-40).
These technologies, however, like the determinations of
phenotypic variables, are limited by microbial recovery
and growth. '

Nucleic acid amplification technology has opened new
avenues of microbial detection and characterization
{1,5. 41], such that growth is no longer required for
microbial identification [42-52). In this respect, molecular
methods have surpassed traditional methods of detection
for many fastidious organisms. The polymerase chain
reaction (PCR) and other recently developed amplifica-
tion techniques have simplified and accelerated the in
vitro process of nucleic acid amplification. The amplified
products, known as amplicons, may be characterized by
various methods, including nucleic acid probe hybridiza-
tion, analysis of fragments after restriction endonuclease
digestion, or direct sequence analysis. Rapid techniques of
nucleic acid amplification and characterization have sig-
nificantly broadened the microbiologists’ diagnostic arse-
nal.
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“Traditional Microbial Typing

BIOTYPING

Traditional nucrobial identification methods typically rely
‘on phenotypes, such as morphologic features, growth
variables, and biochemical utilization of organuc sub-
strates. The biological profile of an organism is termed a
biogram. The determination of relatedness of different
organisms on the basis of their biograms is termed bio-
typing. Investigators must determine which profile vari-

ables have the greatest differentiating capabilities for a

given organism [53, 54]. For example, gram stain charac-
teristics, indole positivity, and the ability -to grow on
MacConkey medium do not aid in the differentiation of
nonenterohemorrhagic Escherichua coli from E. coli O157:
H7. However, sorbitol fermentation has proven to be an
extremely useful characteristic of the biochemical profile
used to differentiate these strains.

Biograms that are 1dentical have been used to infér
relatedness between strains in epidemiological investiga-
tions [32,55,56). The biograms of organisms are not
entirely stable, and several isotypes may exist from a
single isolate [12], Biograms may be influenced by genetic
regulation, technical manipulation, and the gain or loss of
plasmids. In many instances, biotyping is used in conjunc-
tion with other methods to more accurately profile micro-
organisms (32].

ANTIBIOGRAMS, RESISTOGRAMS, AND BACTERIOCIN
TYPING

The susceptibility or resistance of an organism to a
possibly toxic agent forms the basis of the following
typing techniques. The antibiogram is the susceptibility
profile of an organism to a variety of antimicrobial agents,
whereas the resistogram is the susceptibility profile to
dyves and heavy metals [26]. Bacteriocin typing is the
susceptibility of the isolate to various bacteriocins, i.e.,
toxins that are produced by a collected set of producer
strains These three techniques are limited by the number
of agents tested per organism.

By far, the antibiogram is the most commonly used
susceptibility /resistance typing technique, most probably
because the data required for antibiogram analysis are
available routinely from the antimicrobial susceptibility
testing laboratory. Although antibiograms have been
used successfully to demonstrate relatedness, this tech-
nology is limited [6, 10, 55]. And although organisms with
similar antibiograms may be related, such is not necessar-
ily the case. The antibiogram of an organism is not always
constant [57]. Selective pressure from antimicrobial ther-
apy may alter an organism’s antimicrobial susceptibility
profile /58], such that related organisms show different
resistance profiles. These alterations may result from
chromosomal point mutations or from the gain or loss of
extrachromosomal DNA such as plasmids or transposons
[26, 57, 59].

Tang et al.. Molecular diagnostics of infectious diseases

PROTEIN ANALYSIS
Commeraially available antibodies are routinely used to
specifically identify antigeruc proteins from a wide varn-
ety of organisms. In some instances, the test may be used
only to identify the genus and species of an organism.
Examples of this include the cryptococcal antigen agglu-
tination assay and the exoantigen assay for Histoplasma
capsulatum. Other immunoassays are designed to subtype
microbes [60]. Monoclonal antibodies directed against the
major subtypes of the influenza virus, as well as the
various scrotypes of Salmonella, are commonly used in
speciation. Specific antigenic proteins may be detected by
antibodies directed against these proteins in immunoblot
methods (12, 61].

Electrophoretic typing techniques have been used to
examine outer membrane proteins, whole-cell lysates, and
particular enzymes [6, 55]. Several electrophoretic meth-
ods are available to examine the protein profile of an
orgarusm. Generally, outer membrane proteins and pro-
teins from cell lysates are examined by sodium dodecy!
sulfate-polyacrylamide gel electrophoresis. This tech-
nique denatures the proteins and separates them on the
basis of molecular mass. The protein profile may be used
to compare strains (8, 55, 62).

Nondenaturing conditions are used for the electro-
phoretic separation of active enzymes. Multilocus enzyme
clectrophoresis is the typing technique based on the
electrophoretic pattern of several constitutive enzymes
[63]. Differences in electrophoretic migration of function-
ally similar enzymes (e.g., lactate dehydrogenase isoen-
zymes) represent different alleles. These differences or
similarities, especially when numerous enzymes are ex-
amined, may be used to exclude or infer relatedness
(6, 8, 10].

The results of these studies may be difficult to inter-
pret, however. The absence of a particular protein may
simply reflect downregulation of that particular gene
product, rather than the loss of that particular gene.
Additionally, the electrophoretic migration of proteins is
dependent on molecular mass, net protein charge, or both.
Mutations that do not alter these characteristics will not
be detected.

PHAGE ANALYSIS

Bacteriophages, viruses that infect and lyse bacteria, are
often specific for strains within a species. A collection of
bacteriophages, many of which often infect similar bacte-
ria, is termed a panel. When a bacterial isolate is exposed
to a panel of bact\criophages, a profile is generated—:
listing of which bacteriophages are capable of infecting
and lysing the bacteria. The bacteriophage profile may bt
used to type bacterial strains within a given specie:
{31, 62]. The more closely related the bacterial strains, th
greater the similarity of the bacteriophage profiles. Bacte
riophage profiles have been used successfully to typ:
various organisms associated with epidemic outbreak
[64, 65]. However, this typing method is labor-intensiv:
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and requires the maintenance of bacteriophage panels for

+ wide variety of bacteria. Additionally, bacteriophage
ofiles may fail to identify 1solates, are often difficult to

interpret, and may give poor reproducibility [62).

CHROMATOGRAPHIC ANALYSIS |
Chromatographic analysis of short-chain fatty acid pro-
duction is a routine method used to aid in the identifica-

tion of anaerobic bacteria. Computer-aided gas-liquid

chromatography is commercially available and is a means
«: microbial identification. This identification system uti-
lizes the type and amount of cellular fatty acids present in
the lysater of an organism. Many species have unique
cellular fatty . acid chromatographic profiles [9, 13]. Rela-
tionships between strains of a particular species may be
inferred from highly similar cellular fatty acid profiles {7].

Chromatographic analysis is reliable when organisms
* v grown under identical conditions and the cellular
i .ty acids are extracted without technical variation. These
constraints, however, limit the accuracy of this technology
with respect to strain and in some instances even specxes-
level identification.

Nucleic Acid-Based Typing Systems

PLASMID ANALYSIS

i .asmids are small, self-replicating circular DNA found in
many bacteria. These often encode genes related to anti-
biotic resistance and certain virulence factors. In epidemi-
ological studies, relatedness of isolated pathogenic bacte-
rial strains can be determined from the number and size
of plasmids the bacteria carry. Plasmid profile analysis
was among the earliest nucleic acid-based techniques
a~plied to the diagnosis of infectious diseases and has
preven useful in numerous investigations [26-30, 60].
This method has also been widely utilized for tracking
antimicrobial resistance during nosocomial outbreaks
[26, 66, 67]. In studies of the epidemiology of plasmids,
analysis of restriction fragments has proved valuable.
This technique is- widely used to monitor the spread of
resistance-encoding plasmids between organisms and be-
tween hospitals, communities, or even countries [37-40].
The weakness of the analysis is inherent in the fact that
plasmids are mobile, extrachromosomal ‘elements, not
part of the chromosomal genotype. Because plasmids can
be spontaneously lost from or readily acquired by a host
stain, epidemiologically related isolates can exhibit differ-
ent plasmid profiles [68].

RE=TRICTION ENZYME PATTERN

Restriction endonucleases- recognize specific nucleotide
sequences in DNA and produce double-stranded cleav-
ages that break the DNA into small fragments. The
Number and sizes of the restriction fragments, called

restriction fragment length polymorphisms (RFLPs)!, gen-
erated by digesting microbial DNA are influenced by both
the recognition sequence of the enzyme and the compo-
sition of the DNA. In conventional restriction endonucle-
asc analysis, chromosomal or plasmid DNA is extracted
from microbial specimens and then digested with endo-
nucleases into small fragments. These fragments are then
separated by size with use of agarose gel clectrophoresis.
The nucleic acid electrophoretic pattern can then be
visualized by ethidium bromide staining and examination
under UV light.

Restriction endonuclease analysis has the advantage of
being highly reproducible, very accurate in determining
the relatedness of mucrobial strains, and well within the
technical capabilities of experienced laboratory technolo-
gists. However, the major, imitation of this technique,
especially for chromosomal DNA, is the difficulty of

‘comparing the complex profiles generated, which consist

of hundreds of fragments. To address this problem,
pulse-field gel electrophoresis (PFGE) has been developed
[69] to enable the separation of large DNA fragments.
PFGE provides a chromosomal restrichon profile typi-
cally composed of 5 to 20 distinct, well-resolved frag-
ments ranging from ~10-800 kilobases (kb) {58]. The
relative simplicity of the RFLP profiles generated by
PFGE facilitates application of the procedure in identifi-
cation and epidemiological survey of bacterial pathogens
[12, 70-80). Fingerprinting, which combines PFGE with
Southern transfer and hybridization, has been widely
used in studying the tuberculosis nosocomial outbreak in
human 1mmunodef1c1€ncy virus (HIV}-positive popula-
tions (81-83].

RIBOTYPING
Restriction pattems can be obtained by hybridizing
Southern-transferred DNA fragments with labeled bacte-
rial ribosomal operon(s), which encode for 165 and (or)
235 rRNA. This method, called ribotyping, has been
shown to have both taxonomic and epidemiological value
[84, 85]. All bacteria carry these operons, which are highly
conserved and therefore typeable. Particular rRNA se-
quences that are species- or group-specific have been also
exploited in construction of oligonucleotides that have
been used as probes for in situ detection of bacteria.
Ribotyping assays have been used to differentiate
bacterial strains in different serotypes and to determine
the serotype(s) most frequently involved in outbreaks
12, 29,73, 79, 86-89]. This technique is especially useful

! Nonstandard abbreviations: RFLP, restrniction fragment length polymor-
phism, PFGE. pulse-field gel electrophoresis. RAPD, random amplified poly-
morphic DNA, bDNA, branched DNA; RT, reverse transcriptase, TAS, tean-
scription-based  amplification system;  TMA,  transcniption-mediated
amplification; LCR, ligase chain reaction; SDA, strand displacement amplif-
catwn; HPA, the hybrdization protection assay; DELA, DNA enzyme immu-
noassay, 5SCP, single-strand conformational polymorphisms; HCV, hepatitis
C virus, HIV, human immunodeficiency virus; HPV, human papillomavirus,
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in epidemiological studies for organisms with multiple
ribosomal operons, such as members of the family of
Enterobacteriaceae. Ribotyping simplifies the microrestric-
tion patterns by rendering visible only the DNA frag-
ments containing part or all of the ribosomal genes. The
technique is less helpful when the bacterial species under
investigation contains only one or a few ribosomal oper-
ons. In these instances, ribotyping typically detects only
one or two bands, which limuts'its utility for epidemio-
logical studies [70]. Most studies have indicated that
PFGE is superior to ribotyping for analysis of common
nosocomial pathogens. -

RANDOM AMPLIFIED POLYMORPHIC DNA (RAPD)

RAPD typing, originally developed by Welsh and McClel-
land in 1990, involves the use of a shor; (usually 10 to 15
mers), arbitrarily chosen primer to amplify nearly homal-
ogous sequences of the genomic DNA under low-strin-
gency conditions {90]. RAPD has been used to differenti-
ate strains of various species, various serotypes within

species, and various subtypes within a serotype [91-95/. It

is, therefore, useful for determining whether two isolates

of same species are epidemiologically related. RAPD has
" been used to evaluate outbreaks of infection of drug-
resistant bacteria (96-98). For potentially dangerous drug-
resistant organisms such as the mycobacteria, RAPD may
be a better choice than PFGE because the technique
requires fewer open manipulations and the organisms are
kept viable for a shorter period. RAPD is probably the
simplest DNA-based subtyping method to date if a tem-
perature-cycling instrument is available, although the
usefulness for epidemiological investigations remains to
be determined, particularly with regard to reproducibility
concerns. }

Nucleic' Acid Analysis Without Amplification

NUCLEIC ACID PROBES
Nucleic acid probes are capable of identifying organisms
at, above, and below the species level. The quantity of
target detectable by the method depends on the size and
homology of the probe chosen and the nature of the
original specimen; identification of organisms in pure
cultures or from isolated colonies is usually easier than
detection of organism in a direct specimen. DNA probes
facilitate the identification of infectious agents that do not
grow rapidly. Additionally, this technique allows for the
diagnosis of infections in which the organisms are not
easily cultured.or cannot be cultured at all. Detection of
DNA with direct or culture-amplified gene probe technol-
ogy has been applied to several organisms, including
bacteria {14-16], viruses [17-19], mycobacteria [20-22],
fungi [23, 24], and even certain parasites {25]. The tech-
nique has been also used to monitor growth as an
indicator of drug resistance {99, 100] or to directly detect
genes associated with antibiotic resistance (101, 102].

Gen-Probe, MicroProbe, and Digene Diagnostics are
currently manufacturing several direct detection and cul-

Tang et al.. Molecular diagnostics of infectious diseases

ture identification nucleic probes that have been cleared
by the US Food and Drug Administration. The procedures
for the use of DNA probes are now well standardized,
and the advent of synthetic short ohgonucleotide DNA
probes has shortened the time required for probe assay.
However, direct probe techniques appear to be of limited
utility owing to poor sensitivity. Nucleic acid amplifica-
tion methods, described in detail below, have been ex-

. plored to address this problem.

BRANCHED DNA SIGNAL AMPLIFICATION

Developed and manufactured by Chiron Corp., branched
DNA (bDNA) probes are an example of signal amphfica-
tion. Multiple probes as well as multiple reporter mole-
cules are used to increase the signal in proportion to
amount of target in the reaction {103, 104]. In this process,
multiple specific synthetic oligonucleotides hybridize to
the target and capture the target onto a solid surface.
Synthetic bDNA amplifier molecules, which are enzyme-
conjugated, branched oligonucleotide probes, are added.
Hybridization proceeds between the amplifiers and the
immobilized hybrids. After addition of a chemilumines-
cent substrate, light emission is. measured and may be
quantified [103].

In bDNA assays, all hybridization reactions occur
simultaneously and the observed signal is proportional to
the amount of target DNA. DNA quantification can thus
be determined from a calibration curve. Because the target
molecules themselves are not amplified during the pro-
cess, this procedure is less likely to have contamination
problems, which may be encountered with nucleic acid
amplification methods. bDNA is also highly reproducible,
and thus represents an-excellent technological platform
for monitoring therapeutic response and quantifying nu-
cleic acids (105-109]. A separate section below deals with
this particularly important issue. One of the disadvan-
tages, however, is that the bDNA assay is generally less
sensitive than enzymatic amplification techniques and
usually can detect no fewer than 10° to 10% nucleic acid
targets. As with many techniques, moreover, test specific-
ities decline as greater sensitivity is sought.

Polymerase Chain Reaction

As mentioned above, for direct application to the diagno-
sis of infections, nucleic acid analysis without amplifica-
tion often has the disadvantage of low sensitivity (high
detection limits). Nucleic acid amplification techniques
increase sensitivity dramatically while still retaining a
high specificity. Invented by Cetus scientist Kary Mullis
in 1983 [1, 2), PCR is the best-developed and most widely
used method of nucleic acid amplification. An ingenious
procedure, PCR is based on the ability of DNA polymer-
ase to copy a strand of DNA by elongation of comple-
mentary strands initiated from a pair of closely spaced
chemically synthesized oligonucleotide primers.

The basic technique of PCR includes repeated cycles of
amplifying selected nucleic acid sequences {1,2]. Each’
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cvcle consists of three steps: (1) a DNA denaturation step,
n which the double strands of the target DNA are
wnaorated; (b) a primer annealing step, performed at a

" 1 temperature, in which primers anneal to their
Lomplementary target sequences; and (¢} an extension
reaction step, in which DNA polymerase extends the
sequences between the primers. At the end of cach cycle
(each consisting of the above three steps), the quantities of
PCR products are theoretically doubled. The whole pro-
cedure is carried out in a programable thermal cycler.
Generally, performance of 30 to 50 thermai cycles results
i *n exponential increase in the total number of DNA
oS synthesized [110, 111/. Commercial systems for

- PCR detection of DNA targets of Chlamydia trachomatis

and Mycobacterium  tuberculosis are manufactured by
Roche Molecular Systems (112].

REVERSE TRANSCRIPTASE (RT)-PCR
Numerous modifications of the standard PCR procedure
have been developed since its inception [4, 5, 41]. Some of
. »¢ modifications effectively expand the diagnostic ca-
papbiities of PCR and have increased its utility in the
clinical laboratory. RT-PCR was developed to amplify
RNA targets. In this process, RNA targets are first con-
verted to complementary DNA (cDNA) by RT, and then
amplified by PCR. RT-PCR has played an important role

in diagnosing RNA-containing virus infections, detecting *

viable Mycobacteria species, and monitoring the effective-
~ .. of antimicrobial thefapy {113-115]. The conventional
reverse transcription reactions are fastidious: The en-
zymes cannot tolerate higher temperatures, which limits
wide application of the method in clinical diagnosis. The
thermostable DNA polymerase (Tth pol) and its thermo-
stable cousins derived from other organisms have effi-
cient reverse transcription activity and therefore can be
used in detection of RNA targets without the need for a
<rnarate RT step (116, 117]. The higher reaction tempera-
e increases stringency of primer hybridization and
avoids the possible RNA secondary structure, so that the
reaction is more specific and efficient than previous
protocols that used avian myeloblastosis virus RT. Com-.
mercial kits for detection of HIV are now available that
use this single enzyme technology.

NESTED PCR

“usted PCR, designed mainly to increase sensitivity (de-
tect smaller quantities of target), uses two sets of ampli-
fication primers [4, 118]. One set of primers is used for the
first round of amplification, which consists of 15 to 30
cycles. The amplification products of the first reaction are
then subjected to a second round of amplification with
another set of primers that are specific for an internal
sequence that was amplified by the first primer pair
[118-120]. Nested PCR has extremely high sensitivity
because of the dual amplification process. The DNA
product from the first round of amplification contains the
hybridization sites for the second primer pair. The ampli-

RV

fication by the second primer set, therefore, verihies the
specificity of the first-round product. The major disadvan-
tage of the nested-amplification protocol s the high
probability of contamination during transfer of the first-
round amphhication products to a second reaction tube
This can be avoirded either by physically separating the
two amplification mixtures with a layer of wax or oil, or
by designing the primer sets to utilize substantially dif-
ferent anncahng temperatures [4]

MULTIPLEX PCR

Multiplex PCR is an amplification reaction in which two
or more sets of primer pairs specific for different targets
are introduced in the same tube. Thus, more than one
unique target DNA sequence in a specimen can be ampli-
fied at the same time [121]. Pnmers used in multiplex
reactions must be carefully designed to have similar
annealing temperatures, which often requires extensive
empirical testing. This coamplification of multiple targets
can be used for vartous purposes. For diagnostic uses,

l multiplex PCR can be set up to detect internal controls or

to detect multiple pathogens from a single specimen
(115,120, 122, 123]. Quantitative competitive PCR, a vari-
ation, of multiplex PCR, can be used to quantify the
amount of target DNA or RNA in a specimen [124, 125].

BROAD-RANGE PCR

Another important technical modification is the develop-
ment of broad-range PCR, in which conserved sequences
within phylogenetically informative genetic targets are
used to diagnose microbial infection. A broad-range PCR
approach has identified several novel, fastidious, or un-
cultivated bacterial pathogens directly from infected hu-
man tissue or blood [126-131). A universal primer set
designed to target herpesvirus DNA polymerases might
be widely useful for di'agnosing herpesvirus infection
{132]. Broad-range rRNA PCR techniques offer the possi-
bility of rapid bacterial identification through use of a
single pair of primers targeting bacterial small-subunit
(165) rRNA or DNA [133-136]. The major obstacles to
implementation of rapid, automated rDNA-based bacte-
rial identification systems are background contamination
and, needless to say, cost. Perkin-Elmer Applied Biosys-

" tems is developing a commercial system for broad-range

bacterial amplification and sequencing.

Other Nucleic Acid Amplification Techniques
TRANSCRIPTION-BASED AMPLIFICATION SYSTEM (TAS).
Described in 1989 by Kwoh et al,, TAS includes synthesis
of a DNA molecule complementary to the target nucleic
acid (usually RNA) and in vitro transcription with the
newly synthesized cDNA as a template [137]. Variations
on this process are referred to as self-sustaining sequence
replication (“35R”), nucleic acid sequence-based amplifi-
cation ("NASBA"), or transcription-mediated amplifica-
tion (TMA) [138-139]. Three enzymes, RT, RNase H, and
T7 DNA-dependent RNA polymerase are used in the
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reaction. Amplification steps involve the formation of
c¢DNAs from'the target RNA by using primers containing
a RNA polymerase-binding site. The RNase H then de-
grades the nitial strand of target RNA in the RNA-DNA
hybrid after it has served as the template for the first
primer. The second primer binds to the newly formed
cDNA and is extended, resulting in the formation of
double-strand ¢cDNAs in which one or both strands are
capable of serving as transcription templates for RNA
polymerase. Although technically less robust and less
sensitive than PCR, TMA has various merits that make 1t
an attractive option: It works at isothermal conditions in a
single tube to help minimize contamination risks [138].
Amplification of RNA not only makes it possible to detect
RNA-containing viruses, but also lowers the detection
limit for certain bacterial and fungal pathogens by using
high-copy-number rRNA targets [139/. A commercial
system for detection of M. tuberculosis by TMA is now
avatlable from Gen-Probe.

LIGASE CHAIN REACTION (LCR)

Also called ligase amplification reaction, LCR is a probe
amplification technique first described in 1989 by Wu and
Wallace (141]. Successful ligation relies on the contiguous
positioning and correct base-pairing of the 3’ and 5’ ends
of ohgonucleotide probes on a target DNA molecule. In
the process, olhigonucleotide probes are annealed to tem-
plate molecules in a head-to-tail fashion, with the 3’ end
of one probe abutting the 5' end of the second. DNA
ligase then joins the adjacent 3’ and 5' ends to form a
duplicate of one strand of the target. A second primer set,
complementary to the first, then uses this duplicated
strand (as well.as the original target) as a template for
ligation Repeating the process results in a logarithmic
accumulation of hgation products, which can be detected
by means of the functional groups attached to the oligo-
nucleotides {142]. The recently developed thermostable
DNA ligase greatly simplifies this technique and has
increased the specificity by helping avoid problems of
blunt-end hgation at low annealing temperature [143].
When used after a target amplification method, such as
PCR, this technique can be sensitive and is useful for
the detection of point mutations. Although convenient
and readily automated, one potential drawback of
LCR is the difficult inactivation of the postamplification
products. The nature of the technique does not allow the
most widely used contamination control methods to be ap-
plied. The inclusion of a detection system within the same
reaction tube would greatly decrecase the possibility of
contamination, which is associated with the opening of
reaction tubes. A combination LCR kit for detection of both
Chiamydua trachomatis and Neisseria gonorrhea is now com-
mercially available from Abbott Labs. [144].

STRAND DISPLACEMENT AMPLIFICATION (SDA)
SDA is another non-PCR nucleic acid amplification tech-
nique, developed in 1991 (145, 146]. In this system, DNA
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polymerase initiates DNA syntheses at a single-stranded
nuick and displaces the nicked strand during DNA synthe-
s1s. The displaced single-stranded molecule then serves as
a substrate for additional simultaneous nicking and dis-
placement reactions [145). This isothermal DNA amplifi-
cation procedure uses specific pnmers, a DNA polymer-
ase, and a restriction endonuclease to achieve exponential
amplification of target. The key technology behind SDA is
the generation of site-specific nicks by the restriction
endonuclease. Although complicated, SDA has two im-
portant advantages. Except for the initial denaturation
step, SDA 1s isothermal and requires no specialized ther-
mocycler [146]. In addition, SDA can be applied to either
single- or double-stranded DNA.

Qf3 REPLICASE SYSTEM
Initially described in 1988 [147], the QB replicase system is
based on the incorporation of a single-stranded oligonu-

“cleotide probe into an RNA molecule that can be expo-

nentially amplified after target hybridization by the en-
zyme QP replicase [148). The assay is technically
straightforward. The enzyme specifically recognizes the
secondary structure of the RNA from the QB genome,
which is hybridized to the specific target. After a given
probe anneals to a target, the nonhybridized material can
be removed by the enzyme RNase III and subsequent
wash steps. The hybridized probe is then enzymatically
rephcated by Qp replicase to detectable quantities
[147, 149]. The potential advantages associated with the
QR replicase procedure include its remarkable speed (<30
min) and isothermal reaction conditions. The main draw-
back is that unbound reporter probes or nonspecifically
bound reporter probes serve as templates for amplifica-
tion, resulting in false-positive results. This formidable
problem has been largely overcome by the use of target
capture methods.

Practical information about current commercially
available and Mayo Clinic-developed amplification tech-
niques for detection of microbial pathogens are summa-
rized in Table 1.

Analysis of Amplification Products
After target amplification, the simple or conventional
version of product detection is use of agarose gel electro-
phoresis\after ethidium bromide staining. Several other
techniques have been developed not only to “visualize”
the products, but to enhance both the sensitivity and
specificity of amplification techniques as well. A probe-
based DNA detection system has the advantage of pro-
viding sequence specificity and decreased detection lim-
its. After routine agarose gel electrophoresis, the DNA is
transferred to a solid phase, e.g., nitrocellulose or nylon
membrane, and probed by a specific probe. Radiolabeled
probed membranes are directly exposed to x-ray film,



whercas enzyme-labeled probed membrane may be visu-
alized through either light or color production.

11 1BRIDIZATION PROTECTION ASSAY (HPA)
HPA is a homogeneous format. The probe and the prod-
uct are incubated together in a single test tube, and the
binding of probe to the target is measured without further
manipulation [150]. A probe labeled with an acridinium
ester is added to a sample containing PCR products for
identification. In a positive sample, the bound probe is
wrotected from alkaline hydrolysis and, upon addition of
croxides, emits detectable light. The HPA does not

require the binding of amplified DNA to a solid support .

by DNA capture or other means, can be performed in a
few hours, and does not need to have excess unbound
DNA probe removed (151, 152]

DNA ENZYME IMMUNOASSAY (DEIA)

DEIA is another newly developed system for detecting
aucleic acid previously amplified by means of PCR [153).
An anti-dsDNA antibody exclusively recognizes the hy-
bridization product resulting from the reaction between
target DNA and a DNA probe. The final product is
revealed by means of a colorimetric reaction {153]. The
DEIA increases the sensitivity of a previous PCR by
including enzymatic reactions. The hybridization between
specific probe and PCR-amplified target DNA, as well as
the formation of target DNA/probe hybrids and anti-
JdsDNA antibody complex, also enhances the specificity.
The system 1s now manufactured by Sorin Biomedica
Diagnostics in Europe and Incstar in the US. Variations on
DEIA capture techniques have been explored recently
(112, 144].

AUTOMATED DNA SEQUENCING TECHNOLOGY

Direct sequenaing offers direct, rapid, and accurate anal-
vsis of amplfication products. As described earlier,
broad-range PCR amplifies conserved regions of a wide
range of organisms [128, 133]. The amplicon sequence is

first determined, then a DNA sequence-based phyloge- -

netic analysis is performed and used to specifically iden-

tify the pathogen (154]. Current sequencing technologies

include one of two approaches: electrophoretic separa-
tion, based on polyacrylamide slab gels or glass capillar-
ies, and solid-phase sequencing, determined by matrix
hybridization [128, 133).

SINGLE-STRAND CONFORMATIONAL POLYMORPHISMS
(sscr)

SSCP was first described by Orita et al. [155]. DNA is
subjected to PCR with primers to a region of suspected
polymorphism. The PCR products, which usually
incorporate a detector marker, are examined after gel
vlectrophoresis. Physical conformational changes in sin-
gle-stranded DNA are based on the physiochemical prop-
erties of the nucleotide sequence. Variations in the phys-
ical conformation are reflected in differential gel
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migration. This technique is sensitive enough to detect
single nucleotide substitutions. One area in which SSCP
may prove to be of value is in the detection of mutations
related to resistance mechanisms. SSCP, and vanations on
the technique, have been successfully used to examine the
genes contributing to the multidrug resistance of M.
tuberculosis {156, 157].

RFLP ANALYSIS

In postamplification RFLP analysis, the amphfied DNA
fragments are cut by a restriction endonuclease, separated
by gel electrophoresis, and then transferred to a nitrocel-
lulose or nylon membrane. The fragment(s) containing
specific sequences may then be detected by using a
labeled homologous oligonucleotide as a probe. Varia-
tions in the number and sizes of the fragments detected
are referred to as RFLPs and reflect variations in both the
number of loci that are homologous to the probe and the
location of restriction sites within or flanking those loci
[158]. An epidemiological application of RFLPs is dis-
cussed 1n more detail later.

Current Application of Molecular Diagnostics

CLINICAL MICROBIOLOGY
Traditionally, the clinical medical microbiology labora-
tory has functioned to identify the etiologic agents of
infectious diseases through the direct examination and
culture of clinical specimens. Direct examination is lim-
ited by the number of organisms present and by the
ability of the laboratorian to successfully recognize the
pathogen. Similarly, the culture of the etiologic agent
depends on the ability of the microbe to propagate on
artificial media and the laboratorian’s choice of appropri-
ate media for the culture. When a sample of limited
volume is submitted, it is often not possible to culture for
all pathogens. In such instances, close clinical correlation
is essential for the judicious use of the specimen available.

Some microorganisms are either unculturable at
present, extremely fastidious, or.hazardous to laboratory
personnel. In these instances, the diagnosis often depends
on the serologic detection of a humoral response or
culture in an expensive biosafety level II-IV facility. In
community medical microbiology laboratories, these fa-
cilities may not be available, or it may not be economically
feasible to maintain the special media required for culture
of all of the rarely encountered pathogens. Thus, cultures
are often sent to referral laboratories. During transit,
fragile microbes may lose viability or become overgrown
by contaminating organisms or competing normal flora.

The addition of molecular detection methods to the
microbiology laboratory has resolved many of these prob-
lems. The exquisite sensitivity and specificity of many
molecular methods allow the accurate detection of very
small numbers of organisms. The direct detection of
M. tuberculosis nucleic acid from the sputa of smear-
negative patients with tuberculosis clearly illustrates this
point [159-161]. The technology allows for the rapid and
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Table 1. Continued

Clinicat

Clinlcal _
speclficity

AddlItional comments/

sensitivity

. Analytical sensitivity
Contamlination  [{lower detection limit)

Trade mark/ Detection

Baslc technlque

Manufacturer/

Primary appllcatlor;

Informatlon

or testing range
<100 copies/mL

potential
Moderate

system

wB-ECL

adopted name

Institute
Mayo

Organlsm detected

JC virus

Monitoring and

>95*

75°

i

PCR

confirmation

Monntoring and

<100 copies/mL

confirmation
Monitonng and

>99*

>95°

Moderate

WB ECL

PCR

Mayo

- Babesia micrott

<100 copres/mb

>99°

>954

WB-ECL

PCR

Mayo

HGE

Moderate

confirmation
Monttonng and

histology for diagnosts

More sensilive than
confirmation

Monitoring and

>99*

>95°

<100 copies/mL

Moderate

WB ECL

PCR

Mayo

whippeln
Epstein—Barr virus

Trophenma

confirmation

Monitoring and

Unknown® >g5°*

<100 copies/mL

tdoderate

- WB-ECL

PCR

Mayo

Unknown* >g5*

<100 copies/mL

Moderate

WBECL

PCR

Mayo

Varicella-2oster

confirmation

virus

ytomegalovirus: HGE, human

NASBA, nucleic actd sequence based amplification; W8, Western biot; £1A, enzyme Immunoassay; ECL, etectrochemiluminescence: HTLV, human T celt lymphotropic virus; CMV, ¢

granulocytie ehrlichiosis: NA, not applicable; rn, reactlon.
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® Based on Mayo's experience.

-® Based on manufacturer’s claim.

© For testing of seropositive patients only.

295% on synovial fluid specimens, 30% on cerebrospinal fluid and blood specimens from acute cases

* Too few cases to evaluate sensitivity.

accurate identification of the etiologic agent in a time
substantially shorter than traditional methods. This al-
lows for earlier initiation of a focused antimicrobial regi-
men and decreases the likelihood of disease progression.

In selected situations, the limitations imposed by the
ability of an organism to be cultured and the selection of
appropriate media and culture conditions may be re-
placed by the use of molecular microbiology. Microbial
DNA/RNA extracted from a clinical specimen may be
analyzed for the presence of various orgarmsm-specific
nucleic acid sequences regardless of the physiological
requirements or viability of the organism (136, 162-165].
For example, the inability to culture and analyze the
principal etiologic agent of non-A, non-B hepatitis himited
medical advances in this area. Using various molecular
methods, however, investigators have been able to isolate
hepatitis C virus (HCV) nucleic acid [166). Analysis and
cloning of the HCV genome has provided the viral
antigens necessary for the development of specific sero-
logic tests [167-169]. Currently, RT-PCR allows for the
identification, quantification, and sequence analysis of the

"HCV genome in infected individuals {117, 170, 171].

Another unculturable microbe that has been specifi-
cally detected by PCR and probe analysts is Tropheryma
whippelii, the causative agent of Whipple disease
(128,172, 173]. Because of the inability of this organism to
grow on conventional media and the lack of a serologic
test, diagnosis of Whipple disease is usually based on
clinical and specific biopsy findings. Patients with
Whipple disease often have gastrointestinal manifesta-
tions and undergo endoscopy. Small bowel biopsies re-
veal foamy histiocytes filling the lamina propria. The
definitive diagnosis is made with 'the identification of
rion-acid-fast, periodic acid-shift-positive, diastase-resis-
tant bacillary forms within the histiocytes. Extraintestinal
Whipple disease, principally seen as arthritis and central
nervous system involvement, may be missed entirely
unless the clinician and pathologist have a high index of
suspicion. Even so, the diagnosis in such instances may
prove difficult. Advances in the molecular detection of T.
whippelii have resolved this dilemma [128,172,173]. On
the basis of bacterial 165 rRNA gene sequence analysis, an
emerging pathogen, Bordetella holmesii, has been success-
fully identified in the immunocompromised hosts
{130, 131]. Additionally, the DNA from a single clinical
specimen, such as a knee fluid aspirate, may be tested for
several etiologic agents in a differential diagnosis. In such
instances, the specimen may also be analyzed for other
fastidious and difficult-to-culture agents of infectious
arthritis, such as N. gonorrhea or Borrelia burgdorferi
[14, 15, 60, 103, 125, 174].

As alluded to earlier, molecular methods may also be
useful in instances of limited specimen volume (175, 176].
Even in low-volume specimens, enough DNA/RNA can

-often be extracted to allow performance of numerous mo-

lecular assays. However, though molecular methods are
very sensitive, we emphasize that, like culture and direct
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examination, chnically relevant results are ultimately re-
liant on the submission of quality specimens [177-178).

Some organisms, although not difficult to culture, are
encountered infrcqucntly and require special media for
isolation. In these instances, culturing may not be cost-
effective for smaller laboratories because the reagents
may expire before usage; these samples may also be sent
to reference laboratories for culturing, for the sake.of
economy. Again, fragile organisms may die in transit or
become overgrown by contaminating bacteria, thereby
making the subsequent culture useless. If molecular mi-
crobiology facilities are not available in community labo-
ratories, nucleic acids extracted by the use of commer-
cially- available kits may be sent frozen to molecular
reference facilities. Alternatively, if molecular facilities are
available, PCR primers and probes for relatively rare
microorganisms may be maintained frozen at —70 °C for
extended periods and used when needed. This may
eliminate the need for special culture media and circum-
vent problems related to specimen transit. As molecular
techniques become more widely available, the spectrum
of rapid and cost-effective clinical microbiology testing
available to smaller laboratories can be extended.

Molecular methods of detection may also play a role in
laboratory safety. Organisms such as Coxiella burnetti,
M. tuberculosis, Coccidioides immitis, and several viruses
causing severe hemorrhagic fevers are laboratory hazards
[179-182]. These organisms are easily cultured, but may
infect laboratory personnel and cause serious illness or
death. The handling of these organisms requires specially
trained personnel, special equipment, and expensive ven-
tilated facilities—all of which increase laboratory costs.
Molecular methods may be used to detect such organisms
directly from clinical specimens, without exposing labo-
ratory personnel to biologically amplified organisms. Af-
ter the initial extraction procedure, only noninfectious
materials are handled. ‘

The molecular detection of microbes with a known
susceptibility profile is an effective replacement of the
traditional eulture. An excellent exampie is the molecular
detection of Bordetella pertussis {176]. This organism is a
relatively slow grower, requires specially supplemented
and more costly media, and has a known susceptibility
profile. The molecular detection of Bordetella pertussis can
save time, lower laboratory costs with regard to special
media, and allow for the more rapid initiation of effective
therapy [176]. If variable antimicrobial susceptibility pro-
files exist, culture for susceptibility testing is still neces-
sary. Molecular methods for the detection of antimicrobi-
al-resistant strains are in development and in the future
may replace traditional susceptibility testing (see below).
Until then, molecular screening may be used to determine
which patients should be cultured for subsequent suscep-
tibility testing. \

In recent years, the demand for quantification of nu-
cleic acid targets has been growing [183, 184]. By use of
molecular methods, the microbial load of an infecting

Tang et al.: Molecular diagnostics of .nous diseases

pathogen may be determined and its genotype may also
be evaluated. Viral load data are used to monitor thera-
peutic responsiveness and may yield prognostic informa-
tion regarding the progression of disease. Until recently,
however, the task of quantitative nucleic acid amplifica-
tion has been very dufficult to accomplish. Because the
amplification techniques yielded products in an exponen-
tial manner until a plateau was: reached, any factor
interfering with the exponential nature of the amplifica-
tton process would therefore affect the result of the
quantitative assay. In practice, many factors can affect the
efficency of the PCR reaction throughout the amplifica-
tion procedures and result in the differences between
theoretical and actual yields of the reaction. Now, how-
ever, kit-based technologies make it possible for many
laboratories to carry out quantitative determinations.
Viral load determinations are currently used for eval-
uating HIV and HCV disease by the use of PCR and
bDNA technology [185~187]. When used with other sur-
rogate markers such as CD4 cell count, determination of
plasma HIV viral load is an early and accurate marker of
disease progression [188-191]. This may result in better
predictors of disease progression and outcome, as well as
criteria for initiation and modification of antiviral ther-

apy.

CLINICAL EPIDEMIOLOGY AND INFECTION CONTROL

The investigation and control of nosocomial infections is a
complex issue that involves clinical, infection-control, and
laboratory personnel. The efforts of both the microbiolo-
gist and the hospital epidemiologist are facilitated greatly
by the availability of the newer molecular epidemiological
typing techniques. Molecular diagnostic techniques have
been successfully used in the investigation and control of
classical and emerging nosocomial pathogens, such as the
enterobacteriaceae, Pscudomonas aeruginosa, Staphylococcus
aureus, coagulase-negative staphylococci, enterococci,
Candida albicans, M. tuberculosis, and Chlamydia pneumoniac
[79,192~194]. Application of DNA probe-based assays
allows the diagnosis of other nosocomial infections
caused by respiratory syncytial virus (195], varicella-
zoster virus, herpes simplex virus [196], and legionella
{197] to be made in only a few hours. The molecular
techniques have played an important role in the detection,
identification, and antimicrobial susceptibility testing of

" many nosocomial pathogens [83, 96, 97, 198]. A good ex-

ample is the use of PCR-RFLP analysis in combination
with Southern transfer and hybridization (fingerprinting)

to study the multiple drug-resistant M. tuberculosis noso-

comial outbreak in HIV-positive groups in Miami {81] and
New York (82, 83].

The ability to rapidly and unambiguously characterize
organisms suspected of causing a disease outbreak is
critical to public health and hospital infection-control
endeavors. Recent contributions to clinical and hospital
epidemiology have depended on PCR. Severa| putative
outbreaks of infections have been investigated by molec-



ular techniques. Such examples include investigation of
~everal temporally clustered cases of Streptococcus pyo-

nes invasive disease in Air Force recruits {199/, a case
cwster of lymphogranuloma venereum caused by Chia-
mydia trachomatis serovar L1 in homosexual men {200),
and an outbreak of L. coli O157:H7 infection from contam-
inated deer jerky (80].

Significantly, a PCR analysis was recently successfully
used to identify the hantavirus agent responsible for an
outbreak of fatal infections in the US Southwest. In May
493, a mysterious respiratory illness outbreak was re-
.urted in the Four Corners region, which includes New
Mexico, Arizona, Colorado, and Utah. Patients were de-
fined as having unexplained adult respiratory distress
syndrome or acute bilateral pulmonary interstitial infil-
trates. Mortality in confirmed patients was >75%. Prelim-
nary serologic studies found antibodies in patients’ sera
In patterns suggesting cross-reactivity (but not identity)
with previously known hantaviruses [180]. By comparing
-~vnome sequences of available hantavirus strains, precise
regions of sequence conservation within the G2 protein
coding region of the M segment of the hantavirus genome
were identified 201, 202]. Deoxyoligonucleotide primers
were designed for detection of small amounts of hantavi-
rus genome by a nested RT-PCR assay. The genetic
detection assay amplified hantavirus-specific DNA frag-
ments from RNA extracted from the tissues of patients
ind deer mice caught at or near patients’ residences,
:evealing the associated virus to be a new hantavirus and
providing a direct genetic link between infection in pa-
tients and rodents {203].

Molecular techniques are being used increasingly in
epidemiological and clinical investigations. Among viral
infections, the human papillomavirus (HPV)is a common
cause of dysplasia, intraepithelial neoplasia, and carci-
noma in the female genital tract. Certain types, such as
'ypes 16 and 18, have been regarded as high-risk cancer-
associated HPVs, whereas types 6 and 11 are regarded as
low-risk HPVs [204,205]. Use of DNA hybridization
assays in cervical swabs or fresh cervical biopsy speci-
mens to determine HPV infection and viral types has
provided helpful information for clinical assessment and
treatment of patients {206, 207]. In HCV infections, differ-
ent'genotypes have been reported to alter disease severity,
-hange treatment response, and influence virus-host in-
teractions [208). A specific primer set to the 5'-untrans-
lated region has been designed to allow detection of HCV
nucleic acids of different genotypes [209). By using PCR
followed by automated direct sequencing, several studies
have revealed that the most common genotypes of HCV
in the US and Western Europe are la and 1b; other
genotypes, including 2a, 2b, 3, 4, 5, and 6, have their own
histinct global distributions {210, 211]. A new PCR-based
riCV genotyping system has been recently developed to
identify HCV genotypes 1a, 1b, 2a, 2b, 3a, 3b, 4, 5a, and 6a;
it may be useful for a large-scale determination of HCV
genotypes in clinical studies {212].
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Molecular techniques have been used to directly detect
resistance genes or mutations that result in resistance in
organisms. The mccA gene that codes for resistance to
methicillin in Staphylococci has been detected by PCR,
multiplex PCR, and bDNA assays [123, 213, 214]. Defin-
ing the mutations responsible for resistance to microbial
agents has led to new methods for monttoring efficacy of
antimicrobial therapy. Successful investigations have
been carried out on both bacterial and viral resistance
mechanisms. A PCR assay has been used to detect muta-

.tions in the rpoB locus associated with rifampin resistance

in M. tuberculosis [157, 159, 215]. The previously discussed
TMA technique has been described for detection of the
point mutations resulting in zidovudine resistance in
stains of HIV [140). Determination of the structural basis
of resistance of HIV to viral polymerase inhibitors has
been described in detail elsewhere (106,216, 217]. An-
other example is the finding that certain point mutations
in the herpes simplex virus-encoded thymidine kinase
gene are responsible for the occurrence of acyclovir resis-
tance (218]. Determining acyclovir resistance by detecting
these point mutations is extremely important in patients
undergoing long-term therapy and in patients with AIDS
or other immunosuppressed states {156, 219, 220].

Future Applications

Molecular screening of particular at-risk populations for a
group of possible pathogens is an exciting area of devel-
opment in molecular microbiology. For example, numer-
ous ehologic agents cause debilitating gastroenteritis in
immunosuppressed patient populations, including myco-
bacteria (i.e., M. avium complex and M. genevense), para-
sites (i.e., Cryptosporidum, Microsporidum), viruses (ie.,
rotovirus, Norwalk agent), and typical bacterial patho-
gens (E coli vanants, Salmonella, Shigella, and Campy-
lobacter). Traditionally, different methods of detection are
used for each group of intestinal pathogens. This requires
special media, equipment, and expenstve facilities for the
culture of mycobacteria; expertise in the identification of
parasites in ova and parasite stool preparations; virology
facilities; and special media for the workup of bacterial
enteric pathogens. Although these tests may be relatively
inexpensive individually, an adequate workup for enteric
pathogens can be quite costly.

Molecular techniques exist and are being developed
that may be used to screen individuals within a particular
patient population for the'most probable etiologic agents
of disease. Nucleic acids extracted from the stool of
patients with gastroenteritis may be examined with or-
ganism- Or group-specific nucleic acid primers and
probes. In this manner, one single test may be used to
single out the etiologic agent of disecase among numerous
possibilities.

The techniques being used for molecular screening
include the newer nucleic acid “chip” technologies, mul-
tiplex PCR, and the use of broad-range PCR primers and
subsequent nucleic acid sequence analysis. “DNA chips,”
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developed and manutactured by several companies, are
basically the product of bonding or direct synthesis of
numerous specatic DNA probes on a stationary, often
sthcon-based support {221-225]. Within the particular
well, hybridization reactions occur if the appropriate
sequence or probe “feature” is present in the DNA or
RNA analyte. Because numerous features are present on a
single chip, several microbial pathogens or targets may be
detected in one test. The chip may be tailored to particular
disease processes. This technology is easily performed
and readily automated.

Similarly, multiplex PCR utilizes numerous primers
within a single reaction tube so as to amplity nucleic acid
fragments from different targets. Specific nucleic aad
amplification should occur if the appropriate target DNA
is present in the sample tested [115, 120, 122, 123]. Detec-
tion may then be accomplished by traditional Southern
transfer and subsequent nucleic acid probe, by enzyme
immunoassay methods, or by “gene-chip” analysis. This
technology is limited by the number of primers that can
be included 1n a single reaction, primer--primer interfer-
ence, and nonspecific nucleic acid amplfication.

Finally, several pathogens within taxonomically re-
lated groups may be screened with broad-range PCR
primers and detected by nucleic acid sequence or probe
analysis [126-128, 226]. Primers are chosen on the basis of
nucleic acid sequence comparisons to include pathogenic
agents and, if possible, to exclude possible environmental
contaminants. For example, the use of broad-range PCR
primers and sequence analysis has successfully detected
diseases caused by members of the Rickettsiaceae; in par-
ticular, the agents of ehrlichiosis have been identified and

“speciated [154]. This technique is quite useful in instances
in which the differential diagnosis can be hmited to a
particular group of organisms.

Future applications in the field of molecular microbi-
ology include the rapid detection of microbial resistance
and, we hope, with the development of more user-
friendly systems, the expansion of these technologies to
smaller institutions and hospitals. The use of these bio-
chemical methods and reactions in the specific identifica-
tion of infectious agents at the nucleic acid level truly
represents a synthesis of the clinical chemistry and clinical
microbiology laboratories.

-
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1. Introduction

In the 6 years that have elapsed since the polymerase chain rcaction (PCR)
technique was published it has had a major impact on medical rescarch (E6, M8,
M9, S1). Previous reviews (E3, G1, P2, W7, W9) have focused on its clinical
applications in diagnosing viral and genelic discases, and scveral books (E4, £S5,
11) provide detailed protocols appropriate for the research laboratory.
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This article will cover the principle and practice of PCR in the clinical lab-
oratory and applications for diagnosing viral, bacterial, fungal, and parasitic dis-
eases. Other target amplification strategies, such as the ligase amplification system
and transcription-based systems derived from PCR, have been reviewed elsewhere
(P2). Applications of the method in the diagnosis of cancer (G1, K3) and genctic
disease (R1) were reviewed recently. This article contains an outline of the PCR
method and its power and limitations, the key issues involved in using it in the
clinical reference laboratory, the challenges ahead in producing diagnostic kits,
and an overview of its application in specific infectious discase diagnosis.

One objective of this article is to identify those diseases for which PCR offers
an advantage over conventional diagnostic methods, For example, it may be the
preferred method for detecting pathogens that are difficult, slow, or impossible to
culture. Another objective is to address the issues and technical challenges that
must be solved before the method will be widely available in the form of FDA-
approved standardized kits suitable for the clinical laboratory. Examples of these
challenges include procedures for (1) simplifying specimen preparation; (2) elimi-
nating false positives; and (3) colorimetric detection. Questions that we address
include whether PCR is too sensitive, whether more than one gene larget is
necessary, and how positive results can be confirmed if the method is more
sensitive than culture. Finally, although we have not cited all of the published
articles on clinical applications of PCR, we have provided summary tables for cach
of the main areas of disease.

2. Princlple of PCR

2.1. THEe TECHNIQUE

The polymerase chain reaction, developed at the Cetus Corporalion in Emery-
ville, California, employs the enzymatic amplification of DNA in vitro (M8, M9,
S1). By synthesizing many copies of a selected DNA sequence, PCR is capable
of substantially increasing the quantity of this target DNA segment in a sample.
This results in a corresponding reduction in the complexily of the nucleic acid
sequences in the sample, i.e., the ratio of target to extraneous sequences is vastly
increased. Amplification is performed-in discrete cycles, and each cycle can, in
ptinciple, double the amount of target DNA. The target is therefore axuosnsz_m:w
amplified, such that after n cycles there is {1 + x) times as much target as was
present initially, where x is the mean efficiency of each cycle.

The principle of the method is shown in Fig. 1 (Al). A target DNA sequence
to be amplified is chosen first. The nucleotide sequence of the target DNA may be
unknown, but sequences of short stretches of DNA on either side of the larget must
be known. These sequences are used to design two oligonucleotide primers, which
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» -~ — 777
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Fic. 1. Principle of the polymerase chain reaction. (2) The target sequence within a double-

stranded DNA molecule is indicated with a box. (b) After the DNA has been denatured, the two PCR
primets, P1 and P2, anneal to the sequences flanking the target. The 3° end of the pnmer undergoiny
clongation by DNA polymerasc is denoted by-an asterisk. Below primer P1 are the details of the base
pairing between the primer (boxed) andihe DNA sirand (c) DNA polymerase extends the two primers
The region of the extension product complementary to the other primer is shown by a broken line (d)
In the second cycle of PCR, cach of the four DNA strands shown in ¢ 2ancals 10 2 paimer, which is
subsequently exiended. Note that, at the completion of the second cycle, there are fous double-strandcd
copies of the target, which was oniginally present as one double-stranded molecule in a Notc also that
two of the cight single-stranded products are cqual in length 10 the two primers and the _a_n,ak_.::m
targel. Products of this sice accumutate exponents lly duting additional cycles. Reprinted with permis.
sion of Arnheim et al. (Al) and BioSciences
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are single strands of DNA, each approximately 20 nucleotides long. The primers
are made by an automated DNA synthesizer. Specific primers can be ordered from
commercial suppliers.

Each pair of primers is designed so that the nucleotide sequence of one primer
is complementary to sequences flanking one end of the target DNA, whereas the
other primer is complementary to the other flanking sequence. After the double-
stranded target DNA is denatured inlo single strands, the primers hybridize to
their complementary sequences flanking the target gene. The primers are oricnted
so that when they bind 10 the flanking sequences, their 3’-hydroxyl ends face the
target scquence. Next, a thermostable DNA polymerase (S2) is added, and, be-
cause DNA polymerases extend DNA chains by adding deoxyrnibonuclcoside
monophosphates to the 3’ end of each chain, the polymerase extends the primers,
thereby making copies of the target. The extension products of each primer must
be long enough so that they include the sequences complementary to the other
primer. ’

This series of steps—DNA denaturation, primer hybridization, and DNA poly-
merase exlension—represents a PCR cycle. Each of the three steps must be carricd
out at an appropriate temperature. Because the products of one cycle can serve as
templales for the next, if the first cycle is followed by additional ones, more copies
of the target sequence will be made. The main product of the procedure is a
double-stranded DNA fragment equal in length to the sum of the lengths of the two
primers and the intervening DNA. Single-stranded DNA can also serve as a
template, as can RNA after a complementary DNA strand has been synthesized
with a reverse transcriptase. Because the quantity of target DNA theoretically
doubles with each cycle, as few as 20 cycles generates approximately a million
times the amount of target sequence present initially. If only 90% of the targets are
cxtended in each cycle, 20 cycles would yield a 375,000-fold amplification.
Nontarget sequences that anneal to one primer and become extended could at most
increase 20-fold in concentration during 20 cycles because the product of the first
primer extension is not likely to contain the sequence region complementary 1o the
other primer. In some cases, nonspecific binding of the other primner 10 the
extension product of the first primer may result in exponential amplification of
nontarget sequences.

Although the theory of PCR is siraightforward, -a major -problem might be
expected. In a2 human genome containing in excess of 10° nucleotides, a 1000-
base pair target would represent only 10¢—10"" of the available DNA. The an-
nealing of the primer to the many nontarget sequences in such complex tem-
plates, even if it occurred infrequently, would lower the purity of the target in
the final product. The extent to which imperfect annealing and extension can
occur depends on the temperatures during the primer-annealing and polymerase
extension sleps, because the specificity of primer annealing is greater at higher
temperatures. The use of a heal-resistant DNA polymerase allows annealing to
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be carried oul at an elevated (emperature, thus reducing anncaling 10 nontarget
sequences. This added selectivity now allows the experimenter to produce large
amounts of virtually pure target DNA for characterization. Paramcters of the
reaction that affect s efficiency include the concentration of enzyme, mag-
nesium ion, and primers. Oplimization of the reaction by comprehensive titration
of the components is essential for the development of a highly sensitive, repro-
ducible, and robust assay.

2.2 TarGet SeLEcTION

For delecting an infectious discase organism one can choose among secveral
strategies in selecting the genetic target 10 be amplificd. Genes that provide
essential functions and contain both conserved (invariant) and varjable sequence
regions can be targeted. Specificity can be obtained cither af the amplification
(primer) or detcction (probe) stage. Alternatively, the target might be a virulence
gene that is uniquely responsible for distinguishing pathogenic from closely re-
lated nonpathogenic strains, Lypes, or specics. Pathogen-associated targets, such as
cryptic plasmid genes, surface membrane protein genes, or randomly cloned
sequences, can also be used as long as specificity can be demonsirated. General
guidelines for the design of primers have been described (11).

To illustrate the first strategy for detecting the baclerial pathogen that causes
Lyme discase, one could larget a segment of the essential, multicopy, small-
subunit ribosomal RNA (fRNA) gene and design primers based on sequences that
are invariant among all Boireliu specics, but different from other bacteriz outside
this genus (P4). The inlervening region within the amplified segment can be used
to distinguish DNA amplified from Borrelia burgdorferi from other Borrelia
species with a species-specific probe. Variations on this approach can be used
any level of the molecular taxonomic hierarchy, i.c., for bacterial meningitis one
could use primers based on rRNA gene sequences that are identical among all
cubacteria and identify specific pathogens with probes for Haemaplulus influenza,
Newseria meningitidis, clc. (L1). Alternatively, species speciticily can be con-
ferred at the amplification level by using primer—target mismatches to prevent
primer extensiun of sequences from the nontarget organisms (K14, N1, W15).
This general approach can be used for viral discases by targeting regions of
essential genes thut are cither conserved or pathogen specific among, tor cxample,
herpesviruses or retroviruses.

Examples of the sccond approach to target sclection are provided by the work
of Frankel and co-workers (F2) and Persing er al (P3). In the former study, toxin
genes and an invasion-associated Jocus were used to distinguish pathogenic
Lscherichia coli and Shigella from normal gut flora. Persing and co-workers (P3)
targeled a plasmid-cncoded outer-surface protein genc to identify the Lyme dis-
casc pathogen. A key factor to consider when sclecting sequences for primers and
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probes is that most published gene sequences have been obtained from single
isolates of a panticular bacterial species or virus. Therefore, regardless of the target
selecled, one must ensure that the primer sequences are conserved in all isolates
of the target microorganism by empirically testing many strains and closely related
nontarget organisms from different geographic regions.

In developing a PCR assay for a microorganism it is generally advisable to
evaluate initially multiple primer pair systems, ideally for different gencs, partic-
ularly if the primary gene target is nonessential for viability, Muluple primer sets
can be uscd to clarify any negative results that may be duc to plasmid target loss,
sequence deletion, or unanticipated natural variation. If the data from multiple
isolates demonstrate perfcet concordance between the primary and confirmatory

targets and high clinical sensitivity with a single primer pair/probe system, then

the confirmatory sels can subscquently be dropped. Discordance among primer
scts may be due to factors other than sequence variability, such as (1) sample bias
due to low numbers of target organisms, (2) different analytical scasitivities for
different primer sets, and (3) the length of the primer. In this regard, standardized
reagents and procedures in the form of approved kits may go a long way toward
determining whether different clinicul sensitivities reported from various lab-
oratories were due o the absence of » standardized procedure and reagents or to
larget gene variability. In the largest study reported to date (S9), five laboratories
analyzed 200 coded blood samples for HIV-1. One lab had 100% sensitivity and
specificity for all samples; in this lab the concordance between two primer pair scts
for different regions of the HIV-1 gag gene was 100%. The lack of concordance
between primer systems in other labs was clearly due to vanations in the rcagents
and procedure rather than to an inherent inability to amplify some isolates wilh
either primer pair. These results, if confirmed with additional HIV specimens, will
have important implications for the design, speed, and complexity of PCR tests in
the clinical laboratory. Degenerate primers (which are composed of a mixture of

oligonucleotides contasining a mixture of bases at some positions) offer an addi-_

tional approach to extending the range 6f the amplification system to identify
isolates with heterogeneous target sequences (C6, K7, M2, N3, 54).

In some cases, intraspecies sequence variability, or “microheterogeneity,” may
be highly useful for designing probes that can both identify and distinguish
pathogenic isolates for epidemiologic studies. For example, PCR confirmed that

a patient had become infected with the same strain of HIV-1 that was isolated from

her dentist (W11). In another study, Rosa et al. (R5) identified sequence variability
in a randomly ‘cloned gene from North American and European isolates of B.
burgdorferi. This variation may prove useful in following the spread of this
disease in different geographic areas. Kwok et al, (K10, K11) identificd variablc
regions of HTLV that arc flanked by conserved regions. Their primers amplify all
isolates of HTLV-] and -1I while specific probes to the variable sequences are
couscrved within a type, but can distinguish type 1 from II.
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2 3. SAMPLE PREPARATION

One advantage that PCR has over many other DNA probe diagnostic methods
is that small; degraded, damaged, and unpurificd DNA can still scrve as a template
for the first cycle of amplification. Because subsequent cycles mainly use the
newly synthesized product of previous cycles as template, poor-quahity largels are
irrclevant once amplification 1s undenway.

Simple dilunon of crude extracts of clinical specinmens often chimnates -
hibitors of the amplification reachion while still providing cnough 1nitial template
for it to proceed. Thus, microorganism DNA or RNA has been amplilicd directl,
from crude lysates of human peripheral blood mononuclear cells, bacteria, insect
vectors, cervical swabs, urine, hair, sputum, and preserved tissues (W9). None-
theless, most current procedures for blood-borne. viruses such as 1V and HILV
still require a time-consuming isolation of leukocytes prios ta the cell lysis step
What is still nceded in order 10 move these relatively cumbersome specimen
handling methods out of the skilled reference lab is muore rapid, simple, and
preferably automated procedures. Beeause hematin i blood (HO) 1~ the primary
inhibitor of the DNA polymerase in the PCRS pethaps o rapid method w
discovered for inactivating it (1.2). Then i mught be posabice 1o con
asingle bacterium (which contains 13,000 copres ol IRNAY m 10 ml ot blood lrom
a sepsis patient, because a 50-ul aliquot of a completely lysed and homogencous
sample would contain 75 copies of the target.

Another promising approach to sample preparation is capture probe technol-
ogy. In this mcthod the target DNA is hybridized 1o a probe attached 1o 2

be

crdetecting

magnetic  bead. Nontarget scquences are removed by washing prior to
amplification. This procedure was developed in conjunction with the Qf3 signal
amplification system (G2, H10). Targei capture may prove to be a necessary step
for concentrating small numbers of target molecules from a biological fluid. For
efficient recovery of Lisieria monocytogenes, 10 ml of cercbrospinal fluid i
required. Likewise, increasing the volume of blood culture inoculum from 5 1o
10 ml substantially improves bacterial rccovery. Such large volumes are cum-
bersome for DNA extraction; thus a magnetic target capture syslem ‘following

" chaotropic lysis may improve assay sensitivity and reduce sampling crror. This

source of error becomes important when testing small amounts of specimens that
may-have minute amounts of target (ic., 1-10 molccules) betausc variation can
occur simply from nonuniform distribution of the target throughout the sample.
Thus far, the capture probe approach has not been reported to detect fewer than
several thousand copices of target, though this limitation might be a feature of the
Qf system due to the inability 1o rcmove nonspecifically” bound, but still
mav:mmc_a. detection probe. However, in combination with PCR, the captur:
probe sample preparation technology might be capable of detecting 10 or fewer
molecules of target. -
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One implication of the high sensitivity of PCR is that it may alter paticnt
sampling requirements so that they can be convenient and less invasive. Buccal
epithelial cells derived from a mouthwash have been used successfully to identify
carrier stalus for a cystic fibrosis mutation. Hair samples from a patient, relatives
al geographically distant locations, and unrelated donors can be rapidly anatyzed
for histocompatibility leukocyte antigen (HLA) genotype in order to identify
compatible donors for bone marrow transplantation (Table 1). Urinary sediments
might be used in place of urcthal swabs in the diagnosis of infectious urethritis,
peripheral blood might be used instead of bone marrow or liver biopsy in the
diagnosis of atypical mycobacterial infections, and peripheral blood mononuclear
cells (PBMCs) may be used instead of bone marrow in the detection of recurrent
leukemias or lymphomas. The ability to HLA lype a patient’s specimen also offcrs
the potential for resolving instances of sample mix-up, i.c., a particular specimen
can be uncquivocally associated with a patient of the same type(s).

2.4, DeTecmion oF AMPLIFIED DNA .

The first detection methods used with PCR were radioactively labeled probes
to identify specific amplified scquences (M8, S1). With improvements in
amplitication specificily it became possible to visualize amplificd DNA of the
predicted size dircctly by its fluorescence on an agarose or polyacrylamide gel
(M9) following staining with cthidium bromide. Probe-based methods remain a
key featurc of current detection systems primarily becausc of the additional
information and sequence specificity they provide. Probes have been converted 1o
nonisotopic colorimetric systems (B6) by labeling them with an enzyme such as

TABLE 1
HLA GENOTYPING AT THE DQA, DPB, ano DRB LoC1 UsING DNA AMPUIFIED FROM SINGLE [{AtRS
OF RELATIVES OF A BONE MARROW TRANSPLANT CANDIDATE

Indrvidual DQA type DPB type ¢ DRB type
Paticnt 44 U 3.5 (DRB1.0301/1102)
Parent 4.4 NT®

Sibling 44 - 5.5 (DRBI 1101/1102)
Sibling® 44 N} 3,5 (DRB1-0301/1102)
Son 3.4 - 4.1.1 NT
Daughter 34 ENN! NT

Cousin 11,4 21514 NT

“This sibling inhicrited the same chromosomes 6 and was a candidate donor for bune marrow
transplantation. Subsequent analysis of the class 1 loc confirmed thesr genetic idenuty at the relevant
transplantation loci. ’

ANT, Not tested.
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horseradish peroxidase. In another approach, the probe is “reversed” or bound to
a membrane, where 1t “captures” a specific allele or scquence vanient if 1t is present
in the amplificd DNA (S3). This reverse dot-blot format js currently available as
a kit aOﬁI_L».OO} genotyping and offers the conceptual and practical advantage
of simultaneously allowing the detection of multiple alleles (or different patho-
gens) in a single 3&19&&3: reaction (Fig 2). Probes have also been bound o
the wells of nucrotiter plates (H5). This format (Fig 3) has ceriain advantages for
automation with equipment already present in clinical Tabs such us liquid-transfer
devices, plate washers, and readers.

Another probe-based methad of detection that looks promising fur automation
is the colorimetric oligonucleotide ligation assay (OLA), shown in Fig. 4 (N2).
This format employs two adjacent oligonucleotides, a 5"-biotinylated probe (with

"its 3" end at the nucleotide to be assaycd) and a 3’ reporter probe that is labeled

with an enzyme. The probes are hybridized 1o the amplified target DNA, and il
there is perfect complementarity, DNA ligase covalently joins the 1wo probes.
Converscly, if there is a mismaich at the junction, ligation is prevented, Capturc
of the biotinylated, ligated probes on immobilized streptavidin and colortmetric
detection of the reporter have been avtomated.

A luminescent probe detection system called the hybridization protection assay,
or HPA, makes use of an acridinium ester-derivatized- oligonucleotide that s
hybridized 10 the amplified DNA (02). Unhybridized probe is preferentially
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FIG 2 Reverse dot-blot colonimeince detection format for analysis of HLA-DQA genutypes (53)
Reprinied with the permission of Celys Corporation
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Fic. 3. Microtiter plate colorimelric assay.format. Specific probe is bound to the weils of the plate
and hybridizes to the amplified, biotinylated DNA target. Unbound primers are removed by washing
and the DNA 1s detected with avidin-horseradish peroxidase and a chromogenic subslirate. Reprinted
with the permission of Herman er al. (HS) and The American Association of Clinical Chemistry.

converted o a form that does not emit light. This format is convenient, rapid, and
capable of detecting single nucleotide substitutions, but presently has a limited
throughput because each sample must be individually read in a luminometcr. An
instrument that lends itself to batch processing would enable this detection tech-
nology to find wider usc in clinical laboratories.

An alternative lo probe-bascd detection systems uses labels on the primers and
strives for perfect target specificity in the amplification reaction. This is straight-
forward if the target gene differs from unintended targets duc to the presence of
a dcletion or genc rearrangement. However, it may require special conditions such
as sequence-specific PCR (N1, W15) or “nested” PCR (two sets of primers, one
set internal to the first set, in two sequential reactions) (M8) to discriminate
between larget sequences that differ by only one or a small number of nucleotides.
Chehab and Kan (C2) used this approach by derivatizing primers with different
fluorescent dyces and scoring the fluorescence relative to the amplificd mutant or
normal allelc in a fluorimeter (Fig. 5). This mcthod has been automated using the
Duchenne muscular dystrophy gene deletions as a model. It should prove highly
uscful in forensic investigations for rapid analysis of amplified targets that differ
in length, such as variable-number tandem repeat (VNTR) loci.

THL POLY MLRASL CHAIN RLACHON 171

1 Amphly Target DNA

2 Denature, Anneal, and Ligate Moditied
Olgonucleotides on Amplified Target

3 Capture Biotinylated O_ﬁonco_mo.—amm and - |
Perform ELISA tor Digoxigenin

i

|

|

|

|

|

|

|

.

BAHHE

—

| —
—]

——= —

Fic 4. Schematic diagram of the steps in the automated PCR/OLA procedure perfurmed with a
robotic workslation The assay conlains thice sieps (1) DNA 1arget amplification, (2) analysis of target
nucleatide sequences with biotin (B)-labeled and digoxigenin (D)-fabeled o gonucleotide probes and
T4 DNA hgase (L), and (3) eapture of the biotin-labeled probes on streptavidin (SA )-coated mircrotiter
wells and analysis for covalemly finked digovigenin by cang an ELISA procedure with alkafine
phosphalasc (AP)-conjugated antidigoxigenin (D) anuibodies and a substiate (5) Repated with the
permussion of Nickerson ef al (N2) and the Proc Nuld Acod Sci (USA)
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¢ ¥ g NORMAL
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5 A 3’
Green

Fic. 5. Strategy for color complementation assay detection of point mutations. A cytidine-to-
thymidine mutation is 1llustrated in the example. Two allele-specific primers cortesponding 1o this
region are labeled with red dye (corresponding to the wild-lype allele) or green dye (mutant allele). The
pnmer amplifying the opposile strand is unlabeled. After PCR and removal of unincorporated primers,
the amplified products for normat, helerozygous, and homozygous DNA are red, yellow, and green,
respectively. Reprinted with the permission of Chehab and Kan (C2) and the Proc. Natl Acad. Sct.
(USA).

Kemp and co-workers (K6) developed a colorimetric detection system that
incorporates biotin into one (nested) primer and the sequence for a DNA-binding
protein (e.g., the GCN4 gene from Saccharomyces cerevisiae) into the other
primer. Amplified DNA is captuted on an immobilized affinity reagent and the
biotinylated product is detected with avidin-horseradish peroxidase and a chro-
mogenic substrate.

2.5. INacTivaTioN OF AMPLIFIED DNA

There are three types of sample contamination that can result in false positives
with DNA amplification methods. Two types are familiar to clinical chemists. For
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example, sample-to-sample contamination occurs when a positive specimen con-
taminales a negative one during sample preparation or during the procedure.
Another possible source of sample contaminalion is from nonviable organisms
previously grown or prepared in the sample preparation arca. Because some PCR
tests are optimized 1n sensitivity to the level of being able to detect 1-10 molecules
of template, 1t is important with such fests to use positive-displacement pipets
when aliquoting clinical specimens or when isolating nucleic acids from them For
less sensilive tests, ie., genclic disease analyses that may stant with scveral
hundred thousand molecules of target (e.g., in a 1 pg of total DNA), such pre-
cautions are important bul less critical, Pipets that have been used on amplified
DNA must never be used for isolation or aliquoting of sample DNA.

The sccond type of false-positive result can occur at the detection stage, c.g ,
when the liquid-transfer device pipets a strong positive sample followed by a
negative sample. Because a typical PCR reaction can produce 10"'-10* molecules
of amplified DNA in a 100-ul reaction and a radioactive probe can detect about
107 molecules, it is necessary to limit liquid carryover to less than 0 001-0.01 !
(Table 2). Such levels are possible with available avtomated pipcting devices, but
manual pipeting should employ positive-displacement pipets or tips that prevent
aerosols from contaminating the device. ’

TABLE 2
RELATIONSHIP BETWEEN VOLUME OF PCR REACTION
CARRYOVER NUMBER OF MOLLCULES PRESLNT, AND
DETLCTABILTY BY HYBRIDIZATION TO A RADIOACTIVE
PROBE OF MOLECULES CARRIED OVER®

Volumes of carryover Molecules Direct hybndization
[{T1)] of catryover delection (cpm)
100 102 1 x 1

10 10" Ll x 1
| 10" 11 x 108
01 10° 11,000
001 10° 1,100
107} 10’ 110

107* 10 -
107 108 —_
10°¢ 10t -
1677 10! —
108 10° —
107" 10 —
10710 } —
1o <] —

“Reprinted with the permission of Cimino ef al. (C4) and Nucleic
Acids Research
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A third type of contamination is unique to PCR and other amplification meth-
ods, such as the ligase chain reaction. It involves the inadvertent contamination of
a new reaction with the aerosolized products of a previous reaction. As shown in
Table 2, as little as 10-7 ul of a tube of amplificd DNA can contain 10" molecules
of target (C4). Recommended precautions (K13) involve the use of positive-
displacement pipets and the physical separation of areas where PCR reactions are
analyzed from those where new reactions are setup. In laboratories that use these
precautions, contamination is infrequent, and, when it does occur, is usually at the
1- to 100-molecule level. However, in addition to these procedural measures, it
would be useful to have chemical 6r enzymatic methods of selectively inactivating
amplified DNA~—similar 1o the sterilization procedures used to inactivate large
numbers of cultured viruses or bacteria.

Procedurally, there are two points in the assay where inactivation of amplified
DNA can be implemented: during setup of a new reaction or at the end of the
reaction prior to the detection step. Exploiting principles of the restriction
modification and excision repair systems of cells, two groups independently
developed a pre-PCR procedure (Fig. 6) that leads to the specific degradation of
polynucleotide products from previous reactions but does not affect nucleic acid
templates from the clinical specimen (L3, J. Sninsky, unpublished data). Deoxy-
UTP (dUTP) is substituted for dTTP and is incorporated into the amplified DNA.
In setting up a new reaction, the reagent mixture in the tube contains the enzyme
uracil N-glycosylase (UNG), which catalyzes the excision of uracil from single-
and double-stranded DNA (but not RNA) prior to initiating the temperature
cycling process. The resulting abasic polynucleotides arc refractory 1o
amplification. This is due to the stalling of the DNA polymerase and/or strand
scission because of the alkaline lability of the aglycosidic linkage at the clevated
temperature of the first denaturation step. The high denaturation lemperature also
inactivates the UNG. Conditions have been identified in which every molecule
of greater than 10* dUTP-containing templates added to a new reaction can be
inactivated. This solution to the carryover of PCR products into reactions about
to undergo amplification has several attractive features: (1) both single- and
double-stranded DNA contaminaats from previous PCR reactions are inactivated,
(2) the similarity of the A:U and A:T base pairs in the amplified DNA function
in a_manner cquivalent to hybridization targets, and (3} uracil-containing DNA
can be readily cloned and sequenced. Dcoxy-UTP incorporation and UNG treat-
ment promise to dramalically reduce false positives in all applications of PCR
and thereby lead to its even broader use (J. Sninsky, unpublished data).

Another pre-PCR sterilization process utilizes short-wavelength ultraviolet ir-
radiation of the reaction mixture prior to amplification (S6). Although this proce-
dure can inactivate long DNA fragments, or small numbers of shorter fragments
(S7), itis incffective for more than 10° molecules and requires that both the DNA
polymerase and the target nucleic acid be absent from the reaction mixture during

'
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FIG. 6. Schemalic representation of the dUTPuraci N-glycusylase “sicrilization ~ procedure Re-
printed with the permiscion of Sninsky er al (S11)

irradiation (C3). Because the PCR tube must be opened 1o add these components
following irradiation, contamination can still occur.

Cimino and co-workers (C4, 12) developed a post-PCR photochemical proce-
dure for the inactivation of polynuclcotides. The procedure is based upon the
blockage of Tag DNA polymerasc when it encounters a photochemically modificd
basc in a polynuclcotide strand. Isopsoralen reagents that arc added to a reaction
mixture prior to amplification tolerate the thermal cycles, are photoactivated after
amplification, and form cyclobutane adducts with pyrimidine bascs in the DNA.

SRR
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If the damaged strand is carricd over inio a new reaction vessel, it is prevented
from functioning as a templatc for amplification. Effective sterilization requires
the use of these reagents at concentrations that are tajlored to the length and
sequence of the target and the level of amplification (Table 3).

2.6. FUTURE IMPROVEMENTS IN TECHNOLOGY

In addition to predictable improvements in speed, simplicity, and automation of
PCR diagnostic tests, there are several improvements in the procedure that will
find use in the reference laboratory prior to their incorporation into kits. First, it
has been shown that considerable improvement in target specificity and concom-
itant improvements in specific product yield and test sensilivity can be achicved
by adding or “activating” the thermostable DNA polymerase before the first cycle
atalemperature at or above the primer-annealing temperalure (F1). This activation
can be accomplished in several ways: (1) by adding the enzyme after the reaction
has reached an elevaled temperature and (2) by sequestering the primers by

TABLE 3
EXPECTED NUMBER OF NONSTERILIZED PCR MOLECULES AS A
FuncTion of PCR PRODUCT LencTH?

Length of Average effective  Nonstenilized molecules
PCR product adducts/strand per 6 x 10" molecules

Case A (1 adduct per 5 bases)

100 10 2.7 % 107
150 20 1.2 x10°
200 30 <1
250 40 <<l .
300 50 <<l
Case B (1 adduct per 15 bases)

250 133 9.7 x 10°
300 166 34 x 10
350 20 1.2 x 10°
400 233 . 44
450 26.6 1.5

“Photochemical sterilization with isopsoralens is a staustical pro-
cess characterized by measuring the average number a of adducts
per strand of amplified DNA assuming 2 50% A:T content and a
symmelrical distribution of Ts. If the addition reaction is govemned
by Poisson statistics, the fraction of molecules with no modifications
in 2 large population of amplified DNA molecules that has an averge
of a modifications is given by £,(0) = ¢-°, Reprinted with the permis-
sion of Cimino et al. (C4) and Nucleic Acids Rescarch.
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binding them with a single-stranded DNA-binding protcin (H9) that s inactivated
at high temperature. Thesc approaches avoid any nonspecific priming and syn-
thesis that occur during the rcaction setup and during the first risc in Icmperature
to denature the template.

Another improvement for tests when the initial template v RNA rather than
DNA is 10 have a single thermostable enzyme that can function both as g reverse
transcriptasc and as a DNA polymerase (M12). This would greatly simplify tests
for RNA viruses, for bacterial targets that utilize ribosomal RNA largets, and for
cancer tests such as for the hybrid mRNA associated with the BCR-ABL chro-
mosomal translocation in chronic mycloid leukemia.

Nested PCR reactions can offer significamt advantages in sensitivity and
specificity yet are prone 10 catryover contamination of the second reaction that
uses the internal primer sct. Such contamination cannot be prevented by the
sterilization methods described above. Future nested systems may ncorporale
both the external and internal primers in the same reaction, wherein intentional
differences in anncaling and denaturation temperatures of the respeclive primcers
Or largel scquences would only permit the intended targel 1o tundtion in primer
anncaling, denaturation, and synthesis (E6, Y2).

Finally, a major improvement would occur if quantitative procedures (G3, K4,
S8, W3) could be simplificd and especially if potentially homogencaus methods
could be devised (H7). This would greatly extend the utiljty of diagnostit tests for
mceasuring responsc to therapy or recurrent discase, and would help address the
relationship of pathogen load 10 clinically significant discase. Like culture, PCR
can be optimized to detcel single microorganisms and quanitative experiments
might offer the opportunity 1o distinguish septicemia from transient bacteremi
(1) or acute from chronic or tutent viral infections. Once the baseline numbers
are obtained for a particular microorganism/discase, cither (1) the desired level of
sensuivity of a qualitative PCR et can be fixed by adjusting paramecters such as
cycle number or (2) appropriate standards can be run to determine absolule or
relative infection levels. Although the potential for delecting nonviable microorga-
nisms following antibiotic therapy is a possible drawback 10 PCR, a recent study
suggests otherwise. Claas and co-workers (C5) found complerc agreement he-
tween the results of a Chlamydia culture technique and PCR 1n a follow-up study
of palicnts treated with doxycycline. No chlamydial DNA was detected 1n the
patients’ samples afier treatment, Thus, in our view, the “PCR is too scnsitive”
critique will become as obsolete as when the same argument was applicd to
bacterial or viral culture.

A final arca for improvement is 1est turnaround time. Although many current
procedures involve 1-2 hours of sample preparation, 2-3 hours of thermocycling,
and 1-12 hours for detection, there s nothing sacred about these hmes. Some
whole-blood sample preparation procedures can be done in 1-15 minutes and
several nonisotopic detection methods for amplificd DNA have been desertbed

I :
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that can be completed in 15 minutes. Thermocycling times have to date been
limited by the slowness of temperature changes using available instruments, but
a recent paper demonstrated that it is possible 1o reduce each complete cycle of
denaturation, annealing, and synthesis to as few as 20 seconds (W12). Because a
single molecule of template can be amplified to the point of being visualized by
fluorescence on a gel after 42-45 cycles at 85% efficiency, it is possible to
consider reducing test thermocycling time to approximately 30 minutes. A spec-
imen-to-result turnaround time of 1 hour is theoretically possible with appropriatc
instrumentation. It is more likely that times of 2-6 hours will be the practice for
several more years.

3. PCRIn the Clinical Laboratory: Practical Considerations

Clinical reference laboratories are currently performing PCR test services for
infectious diseases, geneltic diseases, and oncology. These clinical rescarch for-
mats are being streamlined and developed for FDA approval and subscquent
availability as kits to all clinical laboratories. Reference laboratorics have become
an important clement in learning about the reliability of this technology. Though
the results of tests in the current research format are not treated as clinically
diagnostic, the tests are being performed under the rigors of the clinical laboratory.
The complexity of these assays has required the technical and theoretical educa-
tion of the staff performing them, and the cumulative expertise of these personnel
has led to specific recommendations in the areas of quality assurance, sample
preparation, amplification, detection, and interpretation of resulls. The lypical
protocols currently being used in reference laboratorics are reviewed below.

3.1. InTRODUCTION

In this section of the protocol, the clinical and epidemiologic significance of the
PCR test is described, with special attention to the contribution of PCR results to
a possible diagnosis. The theory and methodology of the specific assay are also
described, including the primers and probes that are used, whether the system
employs simultaneous amplification of several targets, the species or allelic dif-
ferences that are detected, and the detection system that is employed. An assay
flow chart (Fig. 7) can be helpful in orienting the technicians to the relationships
among the steps of a complex procedure.

3.2, QUALITY ASSURANCE OF REAGENTS AND EQUIPMENT

Refercnce laboratories performing PCR assays in the research format make,
test, and cross-over many of their own reagents. Even reagents that arc purchased

i o

THE POLYMERASE CHAIN REACTHION 179

Sample Preparation
+ Whole blood

Ficoll-Hypaque 10 isolate lymphocytes
Digest lymphocytes in detergentprotenase X

PCR: HLA Gel Checek for Iysate competence
50 i lysate is amplified

Primers: GH26 and G127
25 eycles of amplification

Detection
3% NuSicve/1% agarosc in TBE gel check

PCR: HIV

Stefilization and Amplification
Nute: To cnsure cunsistency of results, amplify each sample n duplicate

25 pl or 50 pl (depending on LA gel-cheek results) lysate is anplifice
Primers: SK431 and SK 145
UNG (Uraci! N Glycosidase)

- Light mineral oveslay of reacuons

37°C 10-minute pretrcatment
95“C 10-minute praincubation
30 cycles of amplification

Dctection
Oligomer hybridization with y2P labeled SK102 probe

Run on 10% acrylamide gel
Avutoradiograph of gel

Fic 7. Assay flow chan.

(e.g., oligonucleotides and ¢nzymes) are tested in-housc with recommended qual-
ity assurance procedures. Future licensed test Kits will not require extensive
preparation of reagents, as they will be provided by the manufucturer.

Detailed recommendations pertaining to equipment and supplics should also be
given in the protocols. Positive-displacemen pipets are crucial for successful PCR
operations; temperature-cycling instruments must meel certain minimum stan-
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dards. Specifications for detection format equipment (c.g., electrophoresis or
transfer apparatus, membranes, probe-labeling supplics) are nccessary. Compli-
ance with these requirements contributes to the level of standardization among
refcrence laboratories performing PCR assays.

3.3. SAMPLE PREPARATION

Sample preparation methods in PCR diagnostics may be different from thosc
that the clinical laboratory has customarily encountered, including the use of
unconventional specimens such as hair, chorionic villi, or synovial fluids. In
cssence, the farget DNA or RNA within a clinical specimen must be released and
stabilized. The predicted presence of the target nucleic acid defines the sample to
be used. In some cases this will entail isolating a group of cells and lysing them,
or pelleting samples and treating the pellets, or digesting tissue. An example of a
sample preparation method is the one used for the detection of HIV-1 in clinical
samples (K12). For this assay, peripheral blood mononuclear cells are isolated
from whole blood by density-gradient centrifugation using Ficoll~Hypaque.
These cells are then lysed by proteinase K and detergents that release the proviral
DNA for amplification. ,

3.4. SETUP AND AMPLIFICATION

Specific instructions must be given to combine the sample DNA with the
buffers, dNTPs, specific primers, and DNA polymerase used in the amplification
reaction. Each of the components of the reaction has previously been carefully
optimized to amplify the intended target cfficiently and to prevent extrancous
amplification of nonspecific targets. The times and temperatures of each step of an
amplification cycle are also optimized specifically for each assay. The information
gained during optimization experiments should be described in a robustness table
that delineates the tolerance ranges for the particular system. Table 4 is an example
generated for a viral pathogen/B-globin coamplification system. In this test, in
which the presence of an infectious virus is being examined, the f3-globin gene
amplification serves as a positive control for sample preparation and for whether
the reaction mixture will allow a target to be amplified if it is indeed present. The
f-globin gene is present in the cellular material used as the specimen in this assay.
A negative viral result without assurance of amplification by a positive B-globin
genc result might be a false ncgative. Controls for successful samplc preparation
and amplification such as the {3-globin and HLA-DQA gene targels arc common
ininfectious discase PCR assays. For genctic and cancer targets, the normal gene,
an invariant section of the target gene, or transcribed RNA is a common control
(F6). ’
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TABLE 4
ROUBUSTALSS OF A TYPICAL AMPLIFICATION Sy S$TEA
Parameter : Optimum*” Tolerance range
[Mg™*) 4 miM 3-8 mif; background increases at ¥
mf
[dNTPs) 200 M cach 200-400 M. varat gene yield decreases
below 200 1/ '
Tug DNA polymicrise 25 Uneaction 2=5 Udreaction; hackground increases
18 yicld decreases
Pathogen primers 50 pmol cachireaction  25-100 pmol each/reaciion

Cellutar control gene primer ol cach/reaction 25-10 pmol cachyreaction

Denatuning temperature 92~98°C: viral gene yield decreases

i above 9K°C
Anncaling temperature 35°C 50-55°C: viral gene decreases al 60°C
{NaCl) i — U-M mAf; cannot exceed 20 pl 097

sabine/reaction

pBs ¥] Cannat cxceed 10 il PBS/reaction
{EDTA] - 0-500 1M
SDs 0

0-001%: 0-003%5 with 1% Laurcth-12

“Paramelers optimized by simultancous B-globinairus amplification.

The setup and amplification section of a protocol also contains specilic recom-
mendalions for the prevention of carryover of acrosolized DNA into the new
reaction. Dedicated hoods or dead-air boxes are recommended in (his step of the
procedure. All pipets should be of the positive-displacement type. 1 iy should be
keplin a dedicated setup hood and should never have previously been used to pipet
amplified target. No amplified DNA should ever be brought into this area. Duning
the reaction setup. either dJUTP and UNG or isopsoralens may be added.

3.5. DerecnionDNA HyBripization

There are currently several methods for analysis of the amplified target DNA.
For HIV-1, liquid kybridization with radioactively labeled probes is uscd (K12).
Tests for HLA genes and sickle cell anemia utilize the reverse dot-blot format with

a nylon membranc (S3). Each clinical research format has a well-characterized
detection method defining the optimum probe concentration, the hybridization
times and temperatures, as well as the concentrations of indicator reagents. Table
5 describes the optima und tolerances of o nonradioactive dot-blot assay (hat uses
biolinylated probes and detection by a chemiluminescent subsirate and 4 strepta-
vidin—HRP conjugate.
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TABLE §
OFTIMA AND TOLERANCES IN OLIGONUCLEOTIDE PROBING
Probe Optimum Tolerances
Hybridization Probe concentration, 0.5 = 1-4 pmol/ml results in higher
pmol/ml final nonspecific background and

occastonal nonspecific cross-reactivity
to r._w: concentration of target.

= 1 hour results in lower sensitivity; at
= 2'hours there is no appreciable
increase in sensiuvity or nonspecific
background

SSC can substitute for SSPE

Time, 1-2 hours

Wash time, 10 minules,
twice 2x SSPE/0.1% SDS
Wash temperature, 56°C Al 54-56°C there is no loss of
specificity or sensitivity; at s 54°C
cross-reactivily may oceur; at 2 57°C
loss of specific signal and decreased
sensitivity occurs
Streptavidin horseradish ~ SAHRP concentration, 40 30-40 ng/ml; 2 40 ng/m! results in
peroxidase (SAHRP) ng/ml final higher nonspecific background; = 30
binding ng/ml results in concomitant loss of
. signal and assay sensitivily

3.6. INTERPRETATION

The research formats presently used in clinical refercnce laboratories employ
complex interpretation schemes, though they have been streamlined to be as
decisive as is practical. Compatible with traditional interpretation, the first deci-
sion 1o be made is whether the test is valid through examination of the control
results. PCR tests may include controls to test for sample preparation,
amplification, and the detection of the amplified DNA. Additionally, for cach
patient specimen, an internal amplification control (e.g., for normal and mutant
genes) may be included. Table 6 lists one interpretation scheme for an HIV assay
wherein one primer pair and probe are used in the test and the decision is based
on replicate testing. }

When these research assays have been developed into licensed diagnostic kits,
many of the reagent preparation steps, quality assurance provisions, and intes-
pretation schemes may be invisible to the user. However, generating FDA-ap-
proved diagnostic kits involves concerns in addition to those we have just ex-
amined. Developers must consider the range of skills of clients likely to use the
kits for diagnostic purposes and design formats such that all users can run the tests
with confidence. Procedures for the licensed clinical kits must be as concise as
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TABLE 6
INTERPRETATION SCHEME FOR AN HIV TEST PROCEDURE
Duplicates: A B Action taken

0 0 No repeats (no HIV DNA delecied)
+ + No repeats (HIV DNA detected)
(4] + Re-PCR and oligomer hybridization
+ 0

Re-PCR and oligomer hybridization .

practical while maintdining reproducibility and accuracy. Kits are run thousands
of times before tests arc marketed and cach step of a test is studicd for efficiency
and effectiveness.

To monitor cach test run, developers must give careful consideration 10 controls,
Manufacturers must assure the quality of specimen preparation reagents, enzyme
amplilication systems, detection systems, oligonucleotide probes, and DNA con-
trols in the test kit. This means that functional enzymes, DNA, substrates, and
other chemicals critically optimized to each other must remain so throughout
shipping, storage, and use, and the clinical laboratory must be able to evaluate this
stability. PCR assay controls are useful for both the amplification and detection
syslems, because one or both of these components could be at fault if the lest does
not work. Controls for testing amplification might include one 10 test the operation
of the thermal cycler, one for DNA polymerase function, and a control 1o test the
amplification competence of cach specimen. Traditional controls to verify detec-
tion system rcagents arc employed specifically for each type of system (c.g. a
color development control for a colorimetric format). A particular challenge to
manufacturers is to develop robust kits and o select the appropriate controls 1o test
each component of the system without overwhelming each run with controls.

In addition to assuring the stability and performance of the reagents within a kit,
manufacturers must establish the sensitivity. specificity, reproducibility, and ac-
curacy of the entire procedure. Reproducibility and accuracy must be defined for
a lest system in which logarithmic signal differences can theorctically occur
because of differences in amplification efficiency or initial target numbers. The
dala gathered by the routine use of PCR in reference laboratorics will help
manufacturers understand the limitations and attributes of each test when con-
fronted with clinical specimens of variable qualily. So far, the optimized research
formats are performing as predicted and the sensitivity and reproducibility of the
methods should be well established when clinical diagnostic kils are available.

DNA testing is relatively new in diagnostics, and amplification technology is as
yct untried in a licensed format. Proficicncy pancls have been made and used jn
the reference laboralories for the research formals, and researchers have been
constructing and sharing their panels for over 2 years. However, these panels, as
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well as their subscribers, vary and they do not approach the rigor present in
established clinical proficiency testing. PCR diagnostics will not be fully in-
tegrated inlo the clinical faboratory until there is a way to assure the stand-
ardization of the results across all laboratories by independent means. Many of the
targets described below are unique and approaches to making and supporting
proficicncy panels may be complex. It would be judicious to plan for the launch
of this technology in the clinical sctting by providing laboratories with a means
1o evaluale their proficiency.

4. Specific Applications

4.1. DiaGNOSsIS OF VIRAL INFECTIONS

The first medical applications of the polymerase chain reactions were for the
diagnosis of genetic discase (¢.g., sickle ccll ancmia), because the mutations could
be directly studied, and for the detection of the virus known 1o cause AIDS,
because of the advantage of speed compared to culture and of greater sensitivity
relative to viral antigen tests (K12, S1). For viruses, PCR also offers the advan-
tages of the ability to detect dormant viruses and noncultivatable viruses such as
human papillomaviruses and some enteroviruses, and the direct detection of the
pathogen instead of the host's serological response to an infection. The clinical
applications of PCR for diagnosis of viral infections have been recently teviewed
(W9) and include detection of neonatal infection, early infection, resolution of
indeterminate serologies, viral typing, differentiation of indigenous viruses and
vaccine strains, and identification of new agents. Table 7 lists some of the viral
diseases that can be diagnosed with PCR.

TABLE 7
REPRESENTATIVE VIRUSES AND ASSOCIATED DISEASES THAT HAVE
Been DeTECTED witi PCR®

Family Virus Disease
Herpesviridae HSV-1, -2 Encephalitis
CMV Dcalness
Papovaviridae HPV Cervical cancer ,
(papillomaviruses)
Flavi ¢ HCV Hepatitis
Enteroviruses Encephalitis
Retroviridae HIV-1,2 AIDS
HTLV-, 1l ATL/TSP

“Reprinted with permission {rom Williams and Kwok (W9) and
Marcel Dekker.
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4.2. BacTERIAL INFECTIONS

Because culture is the “gold standard” diagnostic method for most bacterial
infections, the greatest potential opportunity for PCR 1o contribute 1o clinical
medicine is in detecting pathogens that are slow, fastidious, or dangerous 1o grow,
or where other DNA probe methods lack sensitivity, Thus, the first reports ad-
dressed pathogens such as mycobacleria, Cilumydia trachomans, Legionella
pncimophila, and the Lyme discase pathogen B. burgdorferi (BS, PS, R4, S| ).
Recently, many more papers have appcared on mycobacterial PCR tests. These
have targeted a diversity of genes—some tests amplify all mycobacteria but detect
Mycobacterium tuberculosis via a species-specific probe, and some are specific to
M. wberculosis at the level of amplification (E2, R3, S10). A similar range of
targets has been used for the Lyme pathogen encompassing both universal, plas-
mid-borne, and randomly cloned chromosomal genes (P3, P4, RS). For this patho-
gen. much work remains ta be done in defining how ofien the organism can be
detected in various clinical specimens at cach stage of the discase. Although PCR
can deteet the organism in synovial fid, urine, and cerebrospinal Nuid from Lyme
discasc patiems with advanced discase, il is not yet clear what the clinical sen-
sitivity would be from a blood or urine specimen in carly discase or in paticnts
with ambiguous neurological symptoms and scrology.

Table 8 summarizes PCR applications in detecting bacterial pathogens. Most of
these studies concern simple detection of the organism rather than diagnosis and
await standardized procedures, simplified sample preparation methods, and colori-
metric detection formats before they will be practical for clinical laboratorics.

Future opportunities include rapid detection and identification of bacteriul cau-
ses of sepsis and meningitis, with the ability in the latter to differentiate viral and
fungal etiologics. Universal primers have been described that are conscrved in all
eubacteria tested and a similar situation exists for fungi and enteroviruses (B3, R6,
W&). A coamplification test thal combines primers for the three types of agents
could prove medically uscful in selecting therapy if the result can be obtained in
2 hours.

Another opportunily for rapid PCR diagnosis involves antibiotic susceptibility
testing (C7). Qunissi and co-workers (O3) have demonstrated concordance be-
tween the presence of various genes for antibiotic-modifying enzymes and bLacte-
rial sensitivity in virro. By judicious sclection of conserved or enzyme-specific
gene scquences as primer siles, it is possible to detect, for example, all B-lacta-
mases or only those associated with penicillanase-producing Neisseria gonor-
rhoea (M1, $5). Such tests would have o be used on specimens from fluids that
arc usually sterile (blood or CSF). Preferably they should be direcied toward those
pathogens for which the spectrum of resistance mechanisms s restricted and the
importance of predicling drug resistance is great, e.g., methicillin-resistant Sta-
phylococcus aureus infections (111, M10), or toward the DNA gyrase A mutation
,hmmmuﬁg ) quinolones.

bl i ::.m Rl huckt Hadd?
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TABLE 8
DEMONSTRATED AND POTENTIAL CUNICAL UTILITY OF BACTERIAL DiAGNOsIS BY PCR
2
Pathogen Associated discase Clinical utility Relerences
Mycobacterium Tuberculosis More rapid than culture, BS, H2, S10
tuberculosis possibly more sensitive?
less ruuuao..__m in lab

Mycobacterium leprae Leprosy More rapid than culture H3
Mycobacterium avium Atypical More convenient specimens?  FS

mycobacterial
infections, AIDS

definitive species
identification

Chlamydia trachomatis ~ Venereal discase More rapid than culture, B2, Cs5, D1, D3,

improved sensitivity F5, G4, 01,
W6, W13

Borrelia burgdorferi Lyme discase Easier, faster than culture, M3, P3, P4, R4,

higher specificity than RS
. serology
Mycoplasma pneumoniae  Atypical pncumonia  More sensitive than culiure B2 -
Mycoplasma genitalum  Urethritis Study role in discase - n

Enterotoxigenic Acute diarrhea
Escherichia coli, vibrio

and Shigella

Detect multiple pathogens F4, K8, O1, V1

Salmonella typhi Typhoid fever Monitor carriers F3
Bordetella pertussis Whooping cough Diagnosis H8
Escherichia coli More rapid than Ki
Shiga-toxin conventional methods
Legionella pneumophila  Pneumonia More rapid than culture S11
Rickeutsia rickensii Rocky Mountain Early detection Cl, T2, W10
spotted fever
Rickentsia conorif Boutonneuse fever Choice of therapy T
Ruckettsia tsutsugamushi  Scrub typhus Rapid, differential diagnosis K5
Rickettsia typhi Murine typhus Prevalence; vector control W5
Clostridium dufficile Diarthea Prophylactic therapy? K2, Wi4
distinguish toxigenic
strains
Treponema pallidum Syphilis Improved sensitivity B3

With further simplifications of the technology it may be feasible to consider
patient-specific microorganism diagnoses, in the sense that the immunoglobulin
V-D-J rearrangement that is unique to a B cell leukemia patient can be charac-
terized with respect to its sequence (Y1). This information could be used to
monitor response to therapy and to detect residual or recurrent disease. Using
similar molecular epidemiological information might someday prove useful in
selecting therapy or predicting responsiveness, particularly for those pathogens for

which different phylogenetic lines are associated with distinctive clinical symp-
toms (M11).
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4.3. FUNGAL AND PARASITIC INFECTIONS

The advantages of speed, simplicity, and laboratory safety that PCR offers
compared to culture of some bacterial pathogens extend to the diagnosis of many
fungal and parasitic infections as well (D2). The rapid and definitive diagnosis of
congenital Toxoplasma gondii infection from amniotic fuid samples may reduce
unnecessary abortions and promote earlier treatment of infected fetuses (B7). An
important use is to distinguish pathogenic and nonpathogenic isolates of parasites
such as amocba (M4, T1). Rapid detection and differentiation of the mucocuta-
neous and sylvatic forms of Leishmania brasiliensis permit rapid trcatment of the
former prior to extensive tissue destruction (LA). Lopez er al. (L4) also demon-
strated that PCR can be performed in the field and can provide highly useful
medical information on diseases common in less developed countries.

PCR is just beginning to have an impact on identification and diagnosis of
fungal pathogens such as Cryptococcus neoformans (V2) and Pneumocystis car-
inii (W1, W2). Universal fungal primers (MS, W8) and pathogen-specific probes
(B4) promise to allow rapid and sensitive diagnosis of fungal sepsis and pulmon-

ary disease. Table 9 summarizes the published applications for diagnosis of fungal
and parasitic infections.

-5. Concluslon :

Several predictions can be made regarding the impact of PCR on the clinical
laboratory. First, the diagnostic repertoire of the clinical laboratory will expand,
primarily because the applications of PCR in human genetics, cancer, and in-
fectious disease are increasing rapidly. In the clinical microbiology laboralory, it
will facilitate the detection of pathogens whose identification has previously been
limited by the lack of a practical culture system. This will add to the list of
organisms that can be detected, increasing both the services and responsibility of
the clinical laboratory. In addition, our list of previously unrecognized or
unidentified pathogens will grow (R2). Second, the technological nature of these
methods will create a demand for laboratory professionals with training in this
technology. Currently, very few pathology residency programs, fellowship train-
ing, or medical technology programs offer formal instruction in molecular tech-
niques. Given the potential for widespread applications of these methods in the
clinical laboratory, consideration must now be given o the adequate training of
these future Jaboratory directors and staff, knowing that those cnlering programs
now will be directly confronted with this technology when they complete their
training. Continuing-education programs will have 1o be devcloped that are tai-
lored to the needs of this group of professionals to provide them with an under-
standing of both the power and limitations of these methods. Third, there will be

a need to carefully evaluate the data derived from these new mcthods in light of
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TABLE 9
DEMONSTRATED AND POTENTIAL CLINICAL UTILITY OF FUNGAL AND PARASITIC DiaGNOSIS BY PCR
Pathogen Associated discase Clinical utility References
1. Cryptococcus neoformans  Meningitis Faster than cullure, more V2, M5
sensitive than antigen test
2, Histoplasma copsulatum  Pulmonary disease Faster; safer than culture B4
Blastomyces dermatitidis Faster, safer than culture
3. Coccidioides immitis . , B4
4. Pneumocystis carinii AIDS More sensitive and specific
5. Taxuplasma gondii Toxoplasmosis Fetal infection; more B7, GS
sensitive than [ctal IgM,
faster than hissue cullure
6. Tnpanosoma brucet Sleeping sickness Rapid and sensitive M6
Trypanosoma congolense diagnosis
1. Trypanosoma cruzi Chagas discase Sensitivily; replaces ’ El, M?

xenodiagnosis
Higher sensitivity; detection W4, Z1
of pyrimethamine resistance
Differcntiation of culaneous L4
and sylvalic types

8. Plasmodium \n.?..nnwni Malaria

9. Leishmania brazilicusis  Leishmaniasis

10. Nacgleria fowleri Amebic Early diagnosis from CSF? M4
meningoencephalitis
11, Emamocba histolytica Hemorrhagic colitis Differentiation of pathogenic T1

strains

the clinical picture, especially if the performance of PCR-based tests significantly
exceeds the “gold standards” currently in place. One can envision that PCR could
indeed prove more sensitive than standard methods for the diagnosis of infectious
disease, because it is able to detect nonviable organisms. Cooperation of clini-
cians, researchers, developers, and laboratory professionals will be required to
integrate PCR results with the clinical presentation, patient history, supporting
laboratory data, and treatment records. Only then will the true clinical significance
of PCR results be known. Finally, the intraduction of molecular diagnostic tech-
niques will create a concurrent demand for proficiency testing and laboratory site
visits administered through independent agencies such as the College of American
Pathologists (CAFP). Though many tests may be offered on an experimental basis,
it would be prudent to begin developing CAP proficiency panels in order to
achieve rigorous laboratory standards for both experimental and FDA-approved
tests.

Nucleic acid amplification techniques will undoubtedly have a substantial fu-
lure impact on the practice of laboralory medicine, Ultimately, the spread and
acceptance of these techniques will be limited by cost and other considerations.
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Although amplification methods are now the standard for most genetic disease
tests and are becoming important for many infectious agenls, conventional culture
for most bacterial pathogens is often rapid, incxpensive, as scnsitive, and allows
detection of multiple organisms from a single procedure. Cullure also allows
determination of phenotypic characteristics such as antibiotic resistance, virulence
factors, and strain differences. which may be difficult or impossible to determine
by amplification alone. For infectious diseascs, modern serological techniques,
especially latex agglutination and solid-phasc antibody methods, ure also rapid
and less labor intensive. The decision to use an amplification method is thus likely
lo be dictated by the sensitivity and specificity of the PCR procedure versus the
low-cost, time-proven conventional method, factoring in the turnaround time and
the clinical need for definitive results. With the evolution of this technology,
however, will come increased sophistication and automation of many of the steps
involved in PCR technology, resulting in lower per-test costs. This will likely
result in increased use and may cause us to consider applying it to new arcas.
Inevitably, the acceptance and competent application of this technology will lead

to great improvements in our diagnostic capabilitics and 1o better clinical under-
standing.
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